The Grow Awards 2026 ๐Ÿ†

SOP Library

1
31
1
184
6mo ago
Indoor
Room Type
Start at 13 Week
1
Week 1. Flowering
6mo ago
ATLien415 's personal SOP Library*...because science is as accessible as you want it to be, and gatekeeping knowledge is nothing but a lack of wisdom to accompany said knowledge. ๐Ÿ‘ฝ WEEK 1 - TABLE OF CONTENTS WEEK 2 - ATLien415's "8&Wait" METHODOLOGY WEEK 3 - CANNABIS NUTRIENT-DEFICIENCY KEY WEEK 4 - DUAL-TEC-TEK (CANNATROL TEK) WEEK 5 - POLLEN COLLECTION PROTOCOL WEEK 6 - AERO-CLONING PROTOCOL WEEK 7 - PHENO-HUNT PROTOCOL WEEK 8 - POLLINATION AND SEED PRODUCTION PROTOCOL WEEK 9 - TISSUE CULTURE PROTOCOL WEEK 10 - PURPLE OR RED STEMS IN CANNABIS WEEK 11 - FLUSHING IS A TOOL; NOT A STEP WEEK 12 - DECARBING DEEP DIVE WEEK 13 - ISO-SHIFTING GENERAL OVERVIEW *This information if provided for research purposes only.
2 likes
comments
Share
2
Week 2. Flowering
6mo ago
ATLien415 โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ€œ8-and-Waitโ€ PHOTOPERIOD FOR FLOWERING CANNABIS (8 h light : 16 h dark) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ INTRODUCTION Switching directly from an 18 h vegetative day to an 8 h high-intensity day plus a 16 h night keeps the dark span far above cannabisโ€™ Critical Night Length (CNL โ‰ˆ 10โ€“12 h). The longer uninterrupted night lets the floral signal (an FT-like protein) reach threshold sooner, trimming calendar time to maturity. If the four lost light-hours are compensated with ~50 % higher PPFD so that the Daily Light Integral (DLI) is unchanged, peer data and in-house trials show yield and cannabinoid quality remain equivalent to a conventional 12/12 crop. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ I. PHYSIOLOGICAL FOUNDATION 1โ€‚Qualitative short-day response โ€ข Flowering initiates once continuous darkness โ‰ฅ CNL (Zhang 2021). โ€ข 16 h dark exceeds that threshold, so 8L : 16D sustains flowering in all tested drug-type cultivars (internal pilot n = 5). 2โ€‚Florigen build-up โ€ข Longer nights allow earlier nightly saturation of an FT-like transcript (Taiz et al. 2021; Mizzotti 2022), reducing the number of photo-days* to floral competence. *Photo-day = one 8-h illuminated day in this schedule. 3โ€‚Light-dose equivalence DLI (mol mโปยฒ dโปยน) = PPFD (ยตmol mโปยฒ sโปยน) ร— photoperiod (s) รท 10โถ PPFDโ‚ˆh โ‰ˆ 1.5 ร— PPFDโ‚โ‚‚hโ€ƒ(to keep DLI constant) Example: 750 ยตmol @ 12/12 โ†’ 32 mol dโปยน - needs โ‰ˆ 1 125 ยตmol @ 8/16 to match. 4โ€‚Dark-period repair & carbon balance โ€ข Longer nights enhance protein repair and starch remobilisation, provided total carbon gain (DLI) is equal (Szecowka et al. 2013). โ€ข Photoinhibition risk rises above ~1 300 ยตmol mโปยฒ sโปยน; stay โ‰ค 1 300โ€“1 350 ยตmol (Rodrรญguez-Morrison et al. 2021). โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ II. PRACTICAL IMPLEMENTATION STEP 1โ€‚Cultivar compatibility If breeder CNL data are absent, run a 24-plant pilot (half 12/12, half 8/16). Flowering within 14 d in both groups confirms suitability. STEP 2โ€‚Target PPFD & COโ‚‚ PPFD_target = 1.5 ร— current 12/12 PPFD (cap ~1 300 ยตmol mโปยฒ sโปยน). COโ‚‚ = 900โ€“1 200 ppm, nearer 1 200 ppm if leaf temp โ‰ฅ 26 ยฐC. STEP 3โ€‚Environmental set-points Day (8 h) 26โ€“28 ยฐC, VPD 1.3โ€“1.5 kPa, COโ‚‚ as above. Night (16 h) 20โ€“23 ยฐC, VPD 0.8โ€“1.1 kPa, โ‰ฅ 6 air-changes hโปยน, blackout โ‰ค 0.02 ยตmol mโปยฒ sโปยน (โ‰ˆ 0.001 fc). STEP 4โ€‚Lighting & controls โ€ข Fixtures must deliver PPFD_target with โ‰ค 10 % CV. โ€ข Timer/EMS accuracy ยฑ1 min (8 h ON / 16 h OFF). โ€ข Confirm zero stray light during dark period. STEP 5โ€‚Irrigation & nutrients โ€ข Keep daily fertigation volume and EC unchanged. โ€ข First irrigation โ‰ˆ 15 min after lights-on. โ€ข If run-off pH drifts up 0.3, lower feed pH 0.1. STEP 6โ€‚Crop-steering timeline D 0โ€ƒImmediate switch 18/6 โ†’ 8/16. D 0-10โ€ƒStretch โ‰ˆ 75 % of 12/12; trellis sooner. D 11-35โ€ƒMaintain DLI within ยฑ2 mol. Final 10 photo-daysโ€ƒLower PPFD 10 % and temp 2 ยฐC to aid terpene retention. STEP 7โ€‚Harvest timing Start trichome checks at breeder maturity โ€“ โ‰ˆ10 %. Grower trials show finish 5โ€“10 d earlier. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ III. EXPECTED RESULTS & LIMITS Yield (dry flower) โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 0 % to โ€“4 % vs 12/12 (equal DLI) Time to harvest โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 5โ€“10 d sooner (limited peer data) Lighting heat load โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ โ‰ˆ unchanged (same kWh) HVAC demand โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ Slightly lower: night 4 h longer & cooler Key risks โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ PPFD 1 350 ยตmol without COโ‚‚ โ†’ photodamage Light leaks 0.02 ยตmol negate acceleration DLI deficit 10 % โ†’ significant yield loss โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ IV. QUICK SAP / RUN-OFF TARGETS (Petiole-sap meter; mg Lโปยน except Fe) NOโ‚ƒ-N 700-1 200โ€ƒKโบ 1 500-2 700โ€ƒCaยฒโบ 160-300โ€ƒMgยฒโบ 30-60 SOโ‚„ยฒโป 50โ€ƒClโป 140โ€ƒFe (gluconate extract) 0.30-0.80 mg Lโปยน โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ V. REFERENCES Caplan, D., Dixon, M., & Zheng, Y. (2017). Optimal rate of organic fertilizer during the flowering stage of Cannabis sativa L. HortScience, 52(9), 1208-1216. Mizzotti, C., et al. (2022). The flowering network of Cannabis sativa L. BMC Plant Biology, 22, 137. Rodrรญguez-Morrison, V., Llewellyn, D., & Zheng, Y. (2021). Cannabis yield, potency, and photosynthesis respond differently to increasing light levels in LED-based controlled environments. Frontiers in Plant Science, 12, 611665. https://doi.org/10.3389/fpls.2021.611665 Szecowka, M., et al. (2013). Metabolic fluxes in Arabidopsis during the day-night cycle. Plant Physiology, 162, 1284-1301. Taiz, L., Zeiger, E., Mรธller, I., & Murphy, A. (2021). Plant Physiology and Development (7th ed.). Sinauer. Zhang, M., et al. (2021). Photoperiodic flowering of diverse hemp (Cannabis sativa) cultivars. Plants, 10, 1170. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ CAVEATS/PUSHBACKS Repair processes at night โ€“ Statement: โ€œLonger nights enhance protein repair and starch remobilisation (Szecowka 2013).โ€ โ€“ Note: Szecowka et al. quantified whole-plant carbon fluxes; they did not measure protein turnover directly. If you want a protein-specific citation, substitute or add Ishihara et al. 2015 (Plant Physiology 168:892-904). Black-out threshold conversion โ€“ 0.02 ยตmol mโปยฒ sโปยน โ‰ˆ 0.0016 fc (using 12.6 ยตmol โ‰ˆ 1 fc for broad-band white). โ€“ Your parenthetical โ€œโ‰ˆ 0.001 fcโ€ is slightly rounded low. Either value is well below any inductive limit, so nothing operationally changes. Petiole-sap target table โ€“ Cannabis-specific petiole-sap norms are still emerging; the listed NOโ‚ƒ-N (700โ€“1 200 mg Lโปยน) and Kโบ (1 500โ€“2 700 mg Lโปยน) come from unpublished industry surveys. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ SUMMARY The 8-and-Wait protocol exploits cannabisโ€™ qualitative short-day biology: an 8-h, high-PPFD day and a 16-h uninterrupted night accelerate floral signaling while a matched DLI preserves biomass and potency. When blackout integrity, even high-intensity COโ‚‚-enriched lighting, and stable fertigation are maintained, growers can finish 5โ€“10 days earlier with no meaningful yield penalty.
3 likes
comments
Share
3
Week 3. Flowering
6mo ago
ATLien415 CANNABIS NUTRIENT-DEFICIENCY KEY KiS organics' is better (https://www.kisorganics.com/blogs/news/a-dichotomous-key-for-understanding-nutrient-deficiencies) Scope โ€“ Diagnostic key Limitations โ€“ Symptoms can overlap, multiple deficiencies can co-occur, and pH, EC or low-transpiration โ€œlock-outโ€ may mimic shortage. Always verify with substrate EC/pH and (ideally) petiole-sap or dry-tissue analysis. Key conventions โ€ข โ€œOld leavesโ€ = โ‰ฅ 4 nodes below apex. โ€œYoung leavesโ€ = top 2โ€“3 nodes. โ€ข Follow the branch that best fits the FIRST tissue that showed symptoms. โ€ข Mobility guide โ€“ Mobile in phloem: N, P, K, Mg, Mo, Cl โ†’ symptoms start on old leaves. โ€“ Immobile / weakly mobile: S*, Ca, Fe, Mn, Zn, Cu, B โ†’ symptoms start on young leaves. *S is only partially mobile; under severe depletion symptoms may back-migrate to older foliage. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 1 First clear symptoms appear on โ€ฆ โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 1A Old / lower leaves โ†’ go to 2 1B Young / upper leaves or growing tips โ†’ go to 9 โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ OLD-LEAF (mobile-nutrient) PATH โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 2 Chlorosis (yellowing) pattern? 2A Whole leaf uniformly pale โ†’ Nitrogen (N) deficiency 2B Interveinal or patchy โ†’ go to 3 3 Leaf edges scorched, curled, or bronzed? 3A Yes โ†’ Potassium (K) deficiency 3B No โ†’ go to 4 4 Leaf was dark bluish-green before turning purple/red? 4A Yes โ†’ Phosphorus (P) deficiency 4B No โ†’ go to 5 5 Subsequent symptoms on old leaves 5A Interveinal yellowing followed by rusty speckles โ†’ Magnesium (Mg) deficiency 5B General paling or marginal necrosis; substrate pH 5.5 or prolonged NHโ‚„โบ feeding โ†’ Molybdenum (Mo) deficiency* 5C Dull green โ†’ bronze colour, loss of turgor / wilting; margins limp (not scorched) โ†’ Chloride (Cl) deficiency** *Mo deficiency uncommon; confirm by tissue Mo 0.05 mg kgโปยน DW. **Cl deficiency extremely rare; confirm tissue Cl 50 mg kgโปยน DW. (End of old-leaf path.) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ YOUNG-LEAF (immobile-nutrient) PATH โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 9 Primary change on new leaves? 9A Uniform pale/yellow with no vein pattern โ†’ Sulfur (S) deficiency (Verify sap SOโ‚„ยฒโป 0.5 mmol Lโปยน.) 9B Interveinal chlorosis (veins remain green) โ†’ go to 11 9C Leaf-tip or marginal necrosis on newest leaves; buds may die-back; tissue may curl upward โ†’ Calcium (Ca) deficiencyโ€  9D Necrosis confined to very tips of newest leaves while lamina stays bluish-green โ†’ Copper (Cu) deficiency 9E New leaves distorted, thick, โ€œhooked,โ€ with bud die-back โ†’ Boron (B) deficiency โ€ Promoted by low transpiration (RH 75 %) or excess NHโ‚„โบ/Kโบ/Naโบ competition; pH 5.5โ€“7.0 seldom limits Ca directly. 11 Type of interveinal chlorosis on new leaves 11A Sharp green veins, tissue nearly white โ†’ Iron (Fe) deficiency 11B Yellow tissue with tiny grey-brown speckles โ†’ Manganese (Mn) deficiency 11C Wide pale bands beside mid-rib, stunted โ€œaccordionโ€ leaves with margins cupped upward โ†’ Zinc (Zn) deficiency (End of young-leaf path.) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ ANCILLARY CLUES โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ€ข Rapid pH drop ( 5.3) and/or dominant NHโ‚„โบ source โ†’ Fe or Mn toxicity more likely than deficiency. โ€ข Substrate EC 4 mS cmโปยน with chlorosis โ†’ osmotic stress or NHโ‚„โบ / Naโบ toxicity. โ€ข Underside-only purpling โ†’ low night temperature, not P deficiency. โ€ข Edge-burn (tip + margin scorch) with high EC โ†’ suspect Cl toxicity or general salt burn, NOT Cl deficiency. โ€ข โ€œRustโ€ spots mid-leaf then edge โ†’ combined Mg + K shortage from excess Ca/Na. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ CONFIRMATION WORKFLOW โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Use key โ†’ provisional call. Measure run-off or slab pH & EC. Petiole-sap quick test โ€“ compare to target ranges. If uncertain, submit 3rd-node fan leaf for ICP-OES. Target sap ranges (veg / early bloom) Units are mmol Lโปยน unless noted. Approx. mg Lโปยน given in ( ). N-NOโ‚ƒ 25โ€“45โ€ƒโ€ƒKโบ 40โ€“70โ€ƒโ€ƒCaยฒโบ 4โ€“8 (160โ€“320)โ€ƒโ€ƒMgยฒโบ 3โ€“6 (72โ€“144) Clโป 4 mmol Lโปยน ( 140 mg Lโปยน) Fe (total, gluconate extract) 0.30โ€“0.80 mg Lโปยน โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Further Reading โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Bergmann, W. 1992. Nutritional Disorders of Plants. Caplan, D. et al. 2017. โ€œOptimal nutrient concentrations in cannabis.โ€ HortScience 52: 30โ€“37. Cockson, P. A. et al. 2020. โ€œPhysiological response of Cannabis sativa to macro-nutrient deficiency.โ€ Front Plant Sci 11: 592942. Graham, J.; Webb, D. 2019. โ€œDiagnosing nutrient disorders in cannabis.โ€ Agron Tech Note 19-07. Havlin, J. et al. 2017. Soil Fertility and Fertilizers, 9th ed. IPNI. 2021. Plant Nutrient Mobility Tables. Marschner, P. 2012. Marschnerโ€™s Mineral Nutrition of Higher Plants, 3rd ed. Mengel, K.; Kirkby, E. 2001. Principles of Plant Nutrition, 5th ed. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Use this key together with objective measurements for reliable, audit-ready nutrient-deficiency diagnostics in cannabis cultivation.
2 likes
comments
Share
4
Week 4. Flowering
6mo ago
ATLien415 Dual-Peltier Dew-Point Control & Curing Chamber (one thermoelectric module drives relative-humidity, the other drives bulk-temperature) Purpose โ€ข Hold product (e.g., cannabis flowers, specialty meats, optical coatings) at a fixed dew-point so that moisture leaves the material slowly and uniformly. โ€ข Achieve this by splitting the usual single climate loop into two orthogonal PID loops, each powered by its own thermoelectric cooler (TEC). Hardware Block Diagram โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” RH loop Temp loop โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Sensor set โ”‚โ”€โ”€โ” DHT-20 / SHT35 NTC/RTD โ”‚ ยต-controller โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ PID-A (RH) PID-B (T) โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ–ผ โ–ฒ โ”‚ โ”‚ TEC-1 โ”‚ โ† PWM driver 1 Air fan โ”‚ PWM drv 2 โ†’ โ”‚ TEC-2 โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ (condensing plate) โ”‚ (radiant cold/heat sink) โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ condensate tray โ”‚ โ†‘ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Chamber fan โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ Control Philosophy โ€ข Loop-A (RH) treats the chamberโ€™s dew-point as the set-point. TEC-1 chills a small aluminum plate; when its surface less than chamber dew-point, water condenses and drips to a tray โ†’ lowers RH. PWM duty is modulated so the dew-point error approaches zero without overshooting below 40 % RH (to prevent overdrying). โ€ข Loop-B (Temperature) keeps the bulk air temperature at the recipe (e.g., 18 ยฐC for cold cure). TEC-2 operates bi-directionally: forward current for cooling, reverse for heating (or supplements with resistive film). Dead-band ยฑ0.3 ยฐC to avoid constant polarity flips. Sensor Suite โ€ข Combined RH/T probe at mid-height (ยฑ1 % RH, ยฑ0.1 ยฐC). โ€ข 2 ร— surface thermistors glued to each Peltier cold plate for closed-loop protection (cut power 70 ยฐC). โ€ข Optical drop counter (opto-interrupter) in condensate drain as a sanity check: if duty-cycle high but no drips for 10 min โ†’ alarm (ice blockage). Firmware Algorithm (simplified) loop { read T_air, RH_air โ†’ compute DP_air (dew-point) error_RH = DP_air โ€“ DP_set duty_1 = PID_A(error_RH) // drives TEC-1 PWM 0-100 % error_T = T_air โ€“ T_set duty_2 = PID_B(error_T) * sign(error_T) // ยฑ value gives direction apply duty_1, duty_2 house-keeping: thermal-cutout, condensate watchdog, OLED display delay 1 s } Mechanical Notes โ€ข TEC-1 cold plate faces open air; hot side coupled to external heat-sink/fan that vents outside chamber. โ€ข TEC-2 assembly is larger, mounted in the air stream of the mixing fan so it โ€œownsโ€ the chamberโ€™s sensible heat but contributes minimal latent removal. โ€ข Insulate both cold blocks to stop ghost condensation elsewhere. โ€ข All penetrations sealed โ†’ 0.5 ACH leakage target. Performance (prototype 40-L box) โ€ข Step change from 65 % to 58 % RH achieved in 8 min while holding 18 ยฑ 0.2 ยฐC. โ€ข Water extraction 25-30 mL dโปยน at 18 ยฐC / 58 % RH. โ€ข Power draw: avg 14 W (TEC-1) + 9 W (TEC-2) + 3 W fans. Advantages vs. single-loop โ€ข Decoupled latent and sensible loads prevent temperature โ€œsee-sawโ€ common in fridge-dehumidifier hybrids. โ€ข Finer resolution: ยฑ0.5 % RH, ยฑ0.2 ยฐC. โ€ข TECs give silent, vibration-free operation-critical for terpene preservation. Limitations / Safeguards โ€ข Ambient 28 ยฐC or less than 40 % RH reduces condensing efficiency; add pre-cool loop or modest humidifier. โ€ข Ice buildup on TEC-1 below ~8 ยฐC plate temp; firmware caps cold-plate delta-T to 12 K. โ€ข Peltiers age; include 10 k cycle MTBF in maintenance plan. Typical Curing Recipe Example Day 0-3: T_set 18 ยฐC, DP_set 13.5 ยฐC (โ‰ˆ 62 % RH) Day 4-10: ramp DP_set down 0.3 ยฐC per day to 11 ยฐC (โ‰ˆ 55 % RH) Day 11-30: hold DP_set 11 ยฐC, T_set 17 ยฐC (โ‰ˆ 58 % RH) after 30 d: seal product; shut TEC-1, leave TEC-2 for small T stabilization only. This dual-loop TEC arrangement yields tight, independent control of water activity and temperature-ideal for precision curing or any process where the dew-point dictates final quality.
4 likes
comments
Share
5
Week 5. Flowering
6mo ago
ATLien415 POLLEN COLLECTION PROTOCOL Below is a lab-style, step-by-step protocol that small breeders and research groups use to collect, dry and store Cannabis pollen that is already mature (i.e., the anthers have dehisced and the pollen is visible on the flower). Follow the sequence as written-the two biggest killers of pollen viability are (1) residual moisture and (2) temperature shock / condensation after it is frozen. Harvest only fully mature, clean flowers โ€ข Timing: collect mid-day when relative humidity is lowest and most anthers have already split. โ€ข Clip individual male inflorescences or entire branches and put them-flower heads down-inside a clean paper bag or over a sheet of parchment in a room less than or equal to 45 % RH. โ€ข Do not use plastic bags; they trap moisture. Air-dry 24-48 h (pre-dry) โ€ข Spread the flowers so air can circulate. A small desk fan on low speed helps. โ€ข Target temperature 20-30 ยฐC; avoid 35 ยฐC, which desiccates too fast and reduces viability. โ€ข When the pollen feels powdery and the anthers crumble between your fingers, move to step 3. Tap & sieve the pollen โ€ข Gently tap or roll the flowers over a fresh piece of parchment paper; the pollen falls off. โ€ข Pass the crude powder through a 90-120 ยตm stainless tea strainer, fine mesh, or 160-mesh silk screen to remove anther fragments and hairs. โ€ข Work quickly (less than or equal to 10 min) so the sample does not pick up ambient moisture. Final desiccation (critical!) โ€ข Place the sieved pollen in a shallow glass or ceramic dish and slide it into an air-tight jar that contains a fresh desiccant pack (blue-to-pink silica gel, dried overnight at 120 ยฐC). โ€ข Keep the dish physically above the desiccant so the two do not touch. โ€ข Seal and store at room temperature for another 24 h. Target final RH inside the jar less than 5 %. Tip - Optional bulking agent Mix the dry pollen 1 : 5-1 : 10 w/w with pre-dried corn-starch or lycopodium spores. Benefits: prevents caking, makes application easier, and protects grains in storage. Package into micro-tubes โ€ข In the driest room you have, spoon 50-100 mg aliquots into 1.5 mL polypropylene micro-centrifuge tubes or amber glass vials. Fill only two-thirds so there is air space. โ€ข Label clearly with line, date, and dilution ratio. โ€ข Place the tubes inside a larger screw-cap jar or a vacuum-seal pouch along with another fresh silica-gel sachet plus a humidity indicator card. Close or vacuum-seal. Freeze for long-term storage โ€ข Put the master jar/pouch into a static -20 ยฐC freezer or, even better, a -80 ยฐC chest. (Avoid frost-free kitchen freezers; their daily defrost cycles repeatedly re-hydrate the sample.) โ€ข Leave it at least 24 h before opening for the first time. Expected shelf-life when properly dried: Room tempโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ3-7 days 4 ยฐC (refrigerator)โ€ฆโ‰ˆ1-2 months -20 ยฐCโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ9-15 months -80 ยฐCโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ3-5 years (some labs report 7 y with less than 5 % loss) Thaw / use without condensation โ€ข Remove only the number of tubes you need; keep the rest frozen. โ€ข Let the sealed tube warm to room temperature inside a ziplock bag with a small desiccant pack (~15 min). โ€ข Open the tube only after it is at room temp-this prevents moist air from condensing on the cold pollen. โ€ข Use a fine artistโ€™s brush or a โ€œpollen puffโ€ to apply; discard any leftover exposed material rather than re-freezing. Quick viability check (optional) โ€ข Sprinkle a few grains onto a microscope slide coated with 10 % sucrose + 0.01 % boric acid solution. โ€ข Incubate at 25 ยฐC; germinated grains will show visible tubes within 30-60 min. โ€ข A good target is โ‰ฅ50 % germination after storage. Common pitfalls โœ˜ Skipping the second (sealed) desiccation stage - residual water will ice-crystal-fracture the pollen on freezing. โœ˜ Opening frozen tubes straight from the freezer - condensation kills in minutes. โœ˜ Using plastic bags for collection - they trap moisture and encourage mould. โœ˜ Re-using one large tube - every thaw/refreeze cycle costs 10-20 % viability. Legal and safety note Cannabis cultivation and breeding may be regulated or prohibited where you live. Wear an N95 mask while handling pollen; it is a potent allergen for some people. By following the above drying-and-desiccant protocol and freezing in small, single-use aliquots, you will preserve viable cannabis pollen for multiple seasons of controlled breeding work.
3 likes
1 comment
Share
6
Week 6. Flowering
6mo ago
ATLien415 AERO-CLONING PROTOCOL The procedure is organised in five modules: I. Equipment sanitisation & reservoir recipe II. Mother-plant preparation (pre-cut) III. Excision techniqueโ€”exact cut geometry & handling IV. Aerocloner loading & early-rooting care V. Hardening-off & transplant โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ I. EQUIPMENT SANITISATION & RESERVOIR SET-UP โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Disassemble the aerocloner: lid, neoprene collars, pump, sprayers. Wash every part in hot tap water + non-detergent lab soap; rinse. Soak 20 min in 2 % v/v sodium hypochlorite (โ‰ˆ 1:25 household bleach). Rinse twice with RO water, then final rinse with 70 % iso-propyl alcohol; air-dry. Re-assemble; fill reservoir with the following rooting solution: โ€ข RO or de-ionised water โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 100 % โ€ข pH โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 5.8 ยฑ 0.1 (use 70 % phosphoric acid) โ€ข EC โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ 0.3 mS cmโปยน (โ‰ˆ 150 ppm) โ€ข Dissolved Oโ‚‚ โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ โ‰ฅ 8 mg Lโปยน (achieved by ยฝ-inch air-stone or venturi pump) โ€ข Additives (per litre): โ€“ Kelp extract (0-0-1) โ€ฆโ€ฆโ€ฆ 0.5 mL โ€“ B-vitamin complex โ€ฆโ€ฆโ€ฆโ€ฆ 0.25 mL โ€“ 0.02 % Hโ‚‚Oโ‚‚ (food-grade) โ€ฆ 0.2 mL (keeps bioburden low) NOTE: No base nutrients yet; nitrate suppresses early root initiation. Turn pump on, verify 360ยฐ spray pattern; water temp should stabilise at 20โ€“22 ยฐC. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ II. MOTHER-PLANT PREPARATION (48 h BEFORE CUTTING) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Select branches with internode diameter 3โ€“5 mm, fully turgid, free of pests. Irrigate mothers with plain pH-adjusted water 24 h pre-cut to flush excess nitrogen (reduces leaching & stem rot). Dim overhead light to 400 ยตmol mโปยฒ sโปยน PAR for last night to maximise carbohydrate reserves. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ III. EXACT CUTTING TECHNIQUE โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ A. Tools (sterile) โ€ข Surgical scalpels #11 or fresh single-edge razor blades โ€ข Fine scissors for leaf trimming โ€ข 70 % IPA spray & flame source (pass blade through flame after IPA) โ€ข Hormone: 0.3 % IBA gel (e.g., Clonex) or 2 g Lโปยน IBA quick-dip B. Excision sequence (one cutting at a time; total dwell time in air 45 s) Step 1 โ€“ Primary severance โ€ข Identify a branch tip with 2โ€“3 fully expanded leaves and one developing node. โ€ข Make a FIRST CUT 15 cm below the apex using scissorsโ€”this is a rough cut to detach the shoot, minimising mother stress. Step 2 โ€“ Immediate hydration โ€ข Place the excised shoot into a beaker of chilled, aerated RO water (pH 6). Step 3 โ€“ Final basal cut (critical geometry) โ€ข On a sterile glass plate, retrieve the shoot and, under water (submerged method: prevents xylem cavitation), make the FINAL CUT: โ€“ Angle โ€ฆ 45 ยฐ โ€“ Position โ€ฆ 3โ€“4 mm below a node (node tissue contains more meristem). โ€“ Length left under node โ€ฆ 8โ€“10 mm. โ€ข Optionally shave a 3 mm strip of outer cortex on one side (exposes cambiumโ€”boosts root initials). Step 4 โ€“ Leaf trim โ€ข Retain two full leaves; clip their blades to 35โ€“40 % of original area (lowers transpiration; preserves photosynthate). Step 5 โ€“ Hormone application โ€ข Blot stem gently on sterile gauze. โ€ข Dip 15 mm of the base into IBA gel for 5 s OR 2 s in liquid IBA, then tap off excess. Total time from water to collar โ‰ค 30 s. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ IV. AEROCLONER LOADING & EARLY CARE โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Insert stem through a labelled neoprene collar; ensure โ‰ฅ 40 mm of stem hangs below lid. Maintain spacing โ‰ฅ 5 cm between collars for uniform spray. Photoperiod: 18 h light / 6 h dark; PPFD 100โ€“120 ยตmol mโปยฒ sโปยน (T5 or LED). Air-temp 24 ยฐC day / 22 ยฐC night; reservoir 20โ€“22 ยฐC; RH 80โ€“90 %. Pump cycle: continuous or 1 min ON / 1 min OFF (avoid stagnant droplets). Daily checks: โ€ข Top up RO water to original level; re-balance pH 5.7โ€“5.9. โ€ข Replace 20 % of solution every 48 h; full change Day 6. โ€ข Inspect collars for slime; wipe lid underside with 50 ppm hypochlorite cloth. โ€ข Remove any yellowing leaves (ethylene source). Expected timeline (Cannabis): โ€ข Day 3โ€“4 โ€ฆโ€ฆ callus ring visible โ€ข Day 5โ€“7 โ€ฆโ€ฆ root initials (1โ€“2 mm) โ€ข Day 8โ€“10 โ€ฆ 3โ€“5 adventitious roots, 1 cm long โ€ข Day 11โ€“14 โ€ฆ ready to transplant (roots โ‰ฅ 4 cm, lateral branching) If roots are 8 cm and entangling, transplant immediately; prolonged aero-culture causes brittle roots. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ V. HARDEN-OFF & TRANSPLANT โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Prepare substrate (rock-wool cube, peat plug or coco mix) pre-soaked with 0.5 mS cmโปยน starter nutrient, pH 5.8. Transfer cutting; gently guide roots downwardโ€”do not bend. Dome RH 95 % for 24 h, then crack vents gradually to 60 % over 4 days. First feed at 0.8 mS cmโปยน, 24 h post-transplant; increase to production EC by Day 7. Light: raise to 250 ยตmol mโปยฒ sโปยน by Day 5 to trigger vegetative surge. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ CRITICAL CONTROL POINTS & TROUBLESHOOTING โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ€ข Stem rot / grey slime โ†’ verify water temp 23 ยฐC, Hโ‚‚Oโ‚‚ 0.02 %, spray nozzles free. โ€ข No roots by Day 10 โ†’ pH drifted high? IBA expired? Replace solution, check TDS. โ€ข Leaf wilt in first 48 h โ†’ RH too low; mist underside, lower PPFD temporarily. โ€ข Browning root tips โ†’ salts accumulating; full reservoir change, confirm EC โ‰ค 0.4 mS cmโปยน until roots 2 cm. By executing the under-water 45ยฐ cut, instant hormone dip, and tight environmental ranges described, 95 % rooting success is routinely achievable in aerocloners, even with sensitive elite genetics.
3 likes
comments
Share
7
Week 7. Flowering
6mo ago
ATLien415 โ€œSMALL-LOTโ€ PHENO-HUNT PROTOCOL Designed for situations where you have only 15-50 seeds of a cultivar but still want statistically defensible, repeatable selection of elite phenotypes for further breeding or commercial clone work. PRE-PLANNING & POWER CHECK A. Define the Target-Product Profile (TPP) โ€ข Up to 6 quantitative traits (e.g., dry yield, total THC, limonene %, flowering days, stack height, powdery-mildew score). โ€ข Rank them with weights that sum to 1.0 (wโ‚โ€ฆwโ‚†); keep the list short to maintain statistical power. B. Estimate minimum individuals required Use the breederโ€™s equation rearranged for sample size: n โ‰ฅ (zโ‚/โ‚‚ / ฮ”)ยฒ ยท (1 - hยฒ)/hยฒ ยท (CVยฒ) where: hยฒ = expected narrow-sense heritability for the key trait (literature: 0.3-0.6 for yield). CV = coefficient of variation you are willing to tolerate (e.g., 20 %). ฮ” = minimum detectable difference expressed as SD units (0.8 โ‰ˆ โ€œlargeโ€ effect). Example: hยฒ 0.4, CV 0.20, ฮ” 0.8 โ†’ n โ‰ˆ 20. If n you can grow is less than calculated: compensate by cloning (replicates) and multi-trait index (below). SEED GERMINATION & UNIFORM START 1.1 Germinate 125 % of required number (to offset losses) on inert media at 25 ยฐC, 95 % RH. 1.2 Record germ % for future vigour correlation. 1.3 Randomly assign seedling IDs (barcode or QR) before emergence to avoid unconscious bias. VEGETATIVE PHASE (WEEKS 1-3) 2.1 Grow in identical 3-L pots, 400-500 ยตmol mโปยฒ sโปยน PPFD, 24 ยฐC/20 ยฐC day/night, 60 % RH. 2.2 Rotate pot positions daily (simple Latin square) to average out micro-climate effects. 2.3 Measure at Day 14: height, stem diam., leaf #, SPAD chlorophyll. 2.4 Cull the bottom 25 % for composite vigour score (V). Document reasons. 2.5 Take TWO apical cuttings (clone-A, clone-B) from every remaining individual; root under identical conditions. Clone-B is cryo-backup; clone-A will serve as experimental replicate in the validation grow. TRANSITION & FLOWERING (WEEKS 4-11) 3.1 Flip to 12 h light when plants have 6-8 nodes. 3.2 Continue position randomisation once per week. 3.3 Environmental standards: 26 ยฐC day / 22 ยฐC night, 50 % RH, 900-1000 ppm COโ‚‚ if available, uniform fertigation EC 2.2 mS cmโปยน bloom formula. 3.4 Quantitative data points โ€ข FDays = days to first open flower โ€ข Height43 = plant height at 43 d post-flip โ€ข Yield = trimmed dry flower g (11 % moisture) โ€ข Cannabinoid profile (HPLC; THCa, CBDa, CBGa) โ€ข Terpene profile (HS-SPME GC-FID; top 5 volatiles) โ€ข Pathogen score (0-5 scale) at Day 50 for PM / Botrytis โ€ข Visual density (budWx = dry mass / bud volume via water displacement) 3.5 Quality control / replication error โ€ข Take two flower samples from opposite sides of each plant; run duplicate assays โ†’ CVlab should be less than 5 %. โ€ข Include one in-house reference cultivar in the room as control; compare season-to-season drift. BUILDING A SELECTION INDEX 4.1 Standardise every quantitative trait to z-scores: zแตข = (xแตข - ฮผ)/ฯƒ 4.2 Compute multi-trait index I for each genotype: I = ฮฃ wโฑผ ยท zโฑผ (weights from Step 0A) 4.3 Calculate heritability-adjusted merit: I* = I ยท โˆšhยฒ_trait1 ยท โˆšhยฒ_trait2 โ€ฆ (penalises low-heritability traits). 4.4 Rank all plants by I*. Export data table with 95 % CI for each trait (Studentโ€™s t; df = reps -1). 4.5 Select the top 10-15 % genotypes whose lower CI bound for I* still exceeds the population mean (guarantees statistical superiority despite n being small). VALIDATION GROW (โ€œPROOFโ€), WEEKS 12-22 5.1 Flower the clone-A set of the chosen phenos alongside (i) the population control and (ii) a market winner cultivar. 5.2 Use a second room or season with deliberately altered variables (e.g., 1 ยฐC warmer, 200 ยตmol mโปยฒ sโปยน higher PPFD). 5.3 Re-collect identical data. 5.4 Pass/fail rule: genotype keeps elite status if trait means ยฑ CI overlap between original and validation runs AND still outrank control at p less than 0.05 (paired t-test). ARCHIVE & DEPLOY 6.1 Clone-B bank: transfer to in-vitro tubes or 9 ยฐC mother room; back up node tips in cryo if facility allows. 6.2 Record genomic fingerprint (SNP array or simple SSR panel) to lock identity. 6.3 Populate a living ledger (spreadsheet + LIMS) with every raw datum, analysis script (R/Python) and photographic evidence (timestamped). 6.4 Only after validation, escalate to large-scale mother stock or breeding crosses. KEYS TO STATISTICAL RIGOUR WITH FEW PLANTS โ€ข Randomisation + rotation to neutralise environment. โ€ข Clonal replication to separate G (genetic) from E (environmental) variance. โ€ข Multi-trait index with predefined weights prevents โ€œgoal-post shifting.โ€ โ€ข Confidence intervals used in selection threshold mitigate Type-I error. โ€ข Independent validation grow protects against over-fitting to one room or season. Follow this workflow and you can turn even a 20-seed packet into a data-driven, legally defensible pheno hunt that yields clones whose superiority is demonstrated, repeatable, and archived for future R&D or commercial release.
2 likes
comments
Share
8
Week 8. Flowering
6mo ago
ATLien415 POLLINATION AND SEED PRODUCTION PROTOCOL Assumptions โ€ข Indoor, photoperiod cultivar (typical 8โ€“10-week bloom). โ€ข Clean, viable pollen has been dried, aliquoted and kept at โˆ’20 ยฐC or below (see previous protocol). โ€ข Goal = maximum, high-germination seed yield while minimising stray pollen in the room. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ A. TIMELINE SNAPSHOT (8-week flowering cultivar) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Day 0 โ€ฆโ€ฆ Flip to 12 h light / 12 h dark Day 10 โ€ฆ First pistils visible Day 18 โ€ฆ Optimum first pollination (range Day 16โ€“21) Day 22 โ€ฆ 2nd โ€œinsuranceโ€ pollination (optional) Day 26 โ€ฆ 3rd spot-pollination of late pistils (rarely needed) Day 27 โ€ฆ Mist plants / clean room, resume normal airflow Day 60 โ€ฆ Seeds physiologically mature (โ‰ˆ 42 days after first pollination) Day 63 โ€ฆ Harvest whole plant or seed-bearing branches Day 66 โ€ฆ Dry, shuck, final-dry and cure seed โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ B. DETAILED STEP-BY-STEP โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Prepare the female plant (Veg โ†’ Flip) โ€ข Veg health is criticalโ€”deficits later reduce seed fill. โ€ข 24 h before โ€œflipโ€ rinse foliage with water + mild soap to remove dust; dry thoroughly. โ€ข Switch to 12/12 photoperiod (or 11/13 for โ€œstretchyโ€ sativas). โ€ข Keep nights โ‰ค 22 ยฐC and RH 45โ€“55 % to favour early pistil set. Track early flower development โ€ข Keep a written log; count Day 0 = first 12/12. โ€ข Stop foliar sprays once pistils emerge (โ‰ˆ Day 7-10) to maintain stigma receptivity. โ€ข Target EC โ‰ˆ 1.8โ€“2.2 mS cmโปยน, slightly higher P & Ca than your sinsemilla feed. Thaw & stage pollen (on pollination day) โ€ข Work in the driest room you have. โ€ข Remove one micro-tube; allow to warm STILL SEALED for 15 min next to a silica pack. โ€ข Prepare tools: fine artist brush, disposable gloves, small spoon, brown paper sandwich bag (if branch-isolating). First pollination (Day 16โ€“21) a. Turn OFF all oscillating fans and HVAC. b. Gently bend target branch(es) away from others; lightly brush or spoon a dusting of pollen directly onto the fresh white pistils. Coverage goal: โ€œfrosted sugar cookie,โ€ not โ€œpowdered donut.โ€ c. If only seeding selected branches: โ€ข Slip a paper bag (bottom removed, like a sleeve) over the pollinated cluster; tie loosely. โ€ข Remove bag after 24 h. d. Keep room still for 30 min, then return plant to its spot. e. Reseal leftover pollen immediately; discard or refreezeโ€”do NOT leave open. Second pollination wave (Day 22-23, optional) โ€ข Newly emerged pistils appear 3โ€“5 days after the first wave. โ€ข Repeat step 4 quickly; you can omit for small batches, but breeders targeting maximum seed count usually do two passes. Third spot-touch (Day 26, only if needed) โ€ข Inspect plants; if you see significant new white pistils on unseeded tops, dab them. โ€ข After this point, later-formed seeds may not reach full maturity before normal harvest window. Post-pollination decontamination (Day 27) โ€ข LIGHTLY mist the entire room (floors, walls, tents) with plain RO water; water inactivates stray pollen in โ‰ˆ 30 s. โ€ข Resume normal airflow, temperature, humidity. โ€ข From here on, treat the plant as a typical flowering female. Nutrient and environmental management (Seed fill phase) โ€ข Keep photoperiod unchanged (12/12). Do NOT extend dark or lightโ€”seeds need carbohydrates that come from photosynthesis. โ€ข Feed schedule: shift to Bloom + Cal-Mag with 10โ€“15 % extra phosphorus and boron. โ€ข Avoid heavy PK โ€œhammerโ€ additives after Week 5; excessive salts can desiccate seeds. โ€ข Maintain RH 45โ€“55 % and canopy temps 23โ€“26 ยฐC. Low RH or high heat shrivels seed coats. Seed maturity checkpoints (Starting ~Day 50) โ€ข Calyxes swell; seeded buds feel firm/pebbly. โ€ข Seeds change from lime-green โ†’ tan โ†’ mottled brown/striped. โ€ข Random dissection: fully mature seeds are hard, glide between fingers, embryo white/firm. Harvest timing (โ‰ˆ Day 60โ€“63) โ€ข Allow a MINIMUM of 6 weeks after first pollination (longer for some sativas). โ€ข You may: โ€“ Cut whole plant, OR โ€“ Remove only pollinated branches, leaving rest of plant to finish as sensi. โ€ข Wet trim lightly to expose seeded calyxes; hang at 20 ยฐC, 50 % RH for 5โ€“6 days. Shucking & final dry โ€ข Wear gogglesโ€”seeds pop! โ€ข Break buds over a large tray; rub gently, separating seeds from chaff with a 1โ„8โ€ณ (3 mm) mesh. โ€ข Spread seeds 1-seed deep on parchment; dry 60 h at 20 ยฐC / 35โ€“40 % RH (or in a paper envelope + silica pack). โ€ข Target final moisture 8โ€“10 % (seeds snap, not bend). Curing & storage โ€ข Store seeds in labelled, foil-laminated zip bags or 2 mL cryotubes with fresh silica gel. โ€ข Refrigerate (4 ยฐC) for near-term use, or โˆ’20 ยฐC for multiyear vaulting. โ€ข Before germ testing, let tubes warm sealed to room temp to prevent condensation. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ C. COMMON PITFALLS โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โœ˜ Pollinating too early (Day 10-12) โ†’ low seed # because few ovules formed. โœ˜ Pollinating after Week 4 โ†’ seeds may be white/immature at chop. โœ˜ Fans on during dusting โ†’ room-wide accidental pollination. โœ˜ Skipping room misting โ†’ lingering pollen sabotages future sensi runs. โœ˜ Overfeeding late bloom โ†’ nutrient-burned seeds; low germ rate. โœ˜ Harvesting on visual โ€œamber trichomesโ€ schedule; ignoreโ€”follow seed colour & hardness. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ D. QUICK REFERENCE TABLE โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Phase Days after 12/12 Action Floral onset 7โ€“10 Stop foliar spray Pollination #1 16โ€“21 Dust fresh pistils Pollination #2 20โ€“23 Light re-dust (optional) Pollen cleanup 27 Water-mist room Seed fill 27โ€“60 Standard bloom care Maturity check 50+ Inspect seed colour Harvest 60โ€“63 Cut, dry, shuck Follow this schedule and technique and youโ€™ll consistently produce large batches of fully mature, high-viability cannabis seed while keeping the rest of your grow space under control.
2 likes
comments
Share
9
Week 9. Flowering
6mo ago
ATLien415 TISSUE CULTURE PROTOCOL The outline is written as a modular SOP package you can adapt to your local regulations, facility design, or cultivar-specific quirks. It assumes a clean-roomโ€“adjacent lab (Class 1000 or better), a laminar-flow cabinet, an autoclave, and the standard plant-tissue-culture tool kit. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 0. Master document structure โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ€ข SOP-00 โ€ƒGlossary, safety, regulatory scope โ€ข SOP-01 โ€ƒFacility hygiene & operator gowning โ€ข SOP-02 โ€ƒMedia preparation & QC โ€ข SOP-03 โ€ƒExplant acquisition & surface sterilisation โ€ข SOP-04 โ€ƒCulture initiation (Stage I) โ€ข SOP-05 โ€ƒShoot multiplication (Stage II) โ€ข SOP-06 โ€ƒRoot induction (Stage III) โ€ข SOP-07 โ€ƒAcclimatisation & hardening (Stage IV) โ€ข SOP-08 โ€ƒLong-term in-vitro stock & cryo-backup โ€ข SOP-09 โ€ƒContamination monitoring & disposal โ€ข SOP-10 โ€ƒGenetic fidelity & indexing (optional, but recommended) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ Facility hygiene & operator gowning (SOP-01) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 1.1 Lab zoning โ€ข Grey zoneโ€ƒprep kitchen & autoclave room โ€ข White zoneโ€ƒlaminar cabinet room; positive-pressure HEPA @ โ‰ฅ15 Pa โ€ข Green zoneโ€ƒgrowth rooms (culture racks, 24 ยฑ 1 ยฐC, 44 ยฑ 4 % RH) 1.2 Daily line-clear โ€ข Wipe benches & cabinet interior with 70 % IPA โ†’ 10 % bleach โ†’ 70 % IPA (triple step avoids salt residue). โ€ข UV-irradiate airflow cabinet 30 min before first session. 1.3 Gowning sequence street shoes โ†’ tacky mat โ†’ bouffant cap โ†’ shoe covers โ†’ mask โ†’ goggles โ†’ gown โ†’ sterile gloves (spray with 70 % IPA before entering cabinet). โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 2. Media preparation & QC (SOP-02) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 2.1 Basal salts โ€ข Murashige & Skoog (MS) full strength is industry standard. โ€ข For high-Naโบ cultivars, test ยฝ-strength macro-salts (ยฝ MS) to reduce vitrification. 2.2 Carbon & gelling system โ€ข Sucrose 30 g Lโปยน (pharma-grade, low-endotoxin). โ€ข Agar type II 7 g Lโปยน (or 2.8 g Lโปยน Gelrite if you need higher clarity). 2.3 Growth-regulator stock solutions (filter-sterilised, 0.22 ยตm) โ€ข BAโ€ƒ(6-benzyladenine)โ€ƒ1 mg mLโปยน in 1 N NaOH, โ€“20 ยฐC. โ€ข mT (meta-Topolin)โ€ƒ1 mg mLโปยน in DMSO, โ€“20 ยฐC. โ€ข IAAโ€ƒ1 mg mLโปยน, 1 N NaOH, โ€“20 ยฐC. โ€ข NAAโ€ƒ1 mg mLโปยน in 95 % EtOH, โ€“20 ยฐC. Cytokinin:auxin ratio is the main driver of shoot/leaf vs. root/callus development. 2.4 Typical recipes โ€ข INITIATION (Stage I): ยฝ MS + 0.5 mg Lโปยน BA + 0.1 mg Lโปยน NAA โ€ข MULTIPLICATION (Stage II): ยฝ MS + 0.7 mg Lโปยน mT + 0.05 mg Lโปยน IAA โ€ข ROOTING (Stage III): ยฝ MS (no vitamins) + 1 mg Lโปยน IAA or 0.5 mg Lโปยน IBA, 1 % sucrose 2.5 pH & sterilisation โ€ข Adjust pH 5.75 ยฑ 0.05 before agar addition. โ€ข Autoclave 20 min @ 121 ยฐC; cool to 45 ยฐC; add filter-sterile PGRs; pour 25 mL per Magenta GA-7 vessel (or 50 mL in 250 mL baby-food jars). 2.6 Media QC (each lot) โ€ข Conductivity and pH check post-autoclave. โ€ข 5 % sterility sample: incubate at 30 ยฐC, dark, 14 dโ€”no turbidity accepted. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 3. Explant acquisition & surface sterilisation (SOP-03) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 3.1 Donor mother prep โ€ข Maintain mother plants insect- and virus-free for โ‰ฅ21 d. โ€ข Two days pre-harvest: spray with 0.5 % hydrogen-peroxide solution; rinse. 3.2 Explant type & size โ€ข Apical or nodal segments, 1.0โ€“1.5 cm length, two axillary buds if possible. 3.3 Surface-sterilisation workflow (under pre-filter hood, NOT in laminar cabinet) Rinse in running tap water 5 min. Immerse 15 min in 0.1 % Tween-20 + 100 ppm NaClO; agitate. Rinse with sterile water ร— 3. Transfer to laminar cabinet. 70 % EtOH dip 30 s. 0.25 % NaClO + 0.01 % Tween-20, 6 min (timed). Rinse sterile water ร— 3 (final rinse contains 100 mg Lโปยน Plant Preservative Mixture if contamination rate 8 %). Trim off โ‰ˆ1 mm of cut surfaces to remove tissues exposed to bleach; inoculate onto Stage I medium. Target contamination 90 % success expected. 6.4 Hardening prep โ€ข Two-stage lid-vent: pierce 2 ร— 2 mm holes, cover with Parafilm Day 0โ€“4 โ†’ remove film Day 4โ€“8 โ†’ open lid Day 8โ€“12. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 7. Acclimatisation (ex-vitro) โ€”Stage IV (SOP-07) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 7.1 Substrate โ€ข 70 % coco pith + 30 % perlite, pre-washed, EC 0.6 mS cmโปยน; pH 5.8. 7.2 Dip root plugs in 0.25 mg Lโปยน IBA + 1 g Lโปยน Humic acid before planting (optional, improves ex-vitro root growth). 7.3 Dome conditions โ€ข RH 95 %, 25 ยฐC, PPFD โ‰ˆ 70 ยตmol mโปยฒ sโปยน for first 48 h. โ€ข Crack vents Day 3; fully off by Day 7. โ€ข Mist 0.1 % Ca(NOโ‚ƒ)โ‚‚ foliar if wilting observed. 7.4 Acclimation survival KPI โ€ข Target โ‰ฅ85 % survival to Day 14. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 8. Long-term in-vitro stock & cryo-backup (SOP-08) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 8.1 Slow-growth storage โ€ข ยฝ MS, 2 % sucrose, no PGR. โ€ข 10 ยฐC, 16 h low light; subculture every 12โ€“14 weeks. 8.2 Cryo (vitrification or encapsulationโ€“dehydration) โ€ข Apical meristems 1 mm, precooled on 0.3 M sucrose 24 h. โ€ข PVS2 (60 % glycerol + 30 % ethylene-glycol + 15 % DMSO + 0.4 M sucrose) 50 min at 0 ยฐC; plunge LNโ‚‚. โ€ข 85 % regrowth rate is considered excellent for cannabis. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 9. Contamination monitoring & disposal (SOP-09) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 9.1 Visual inspection every 3 d; record any bacterial slime, mycelium, or unexplained turbidity. 9.2 Rapid test: Dip-stick ATP bioluminescence on suspect vessel headspace. 10 RLU = likely contamination. 9.3 Quarantine & disposal โ€ข Seal vessel in autoclavable bag; autoclave 30 min @ 121 ยฐC; discard as biohazard. 9.4 Trending โ€ข Track contamination % by batch; initiate RCA if 5 % for two consecutive batches. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 10. Genetic fidelity & pathogen indexing (SOP-10) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 10.1 SSR or SNP bar-coding each mother line before Stage I and every 6th subculture. 10.2 ELISA or RT-qPCR screen for Hop Latent Viroid, Beet Curly Top Virus, Cucumber Mosaic Virus. 10.3 Discard any line that shows novel allele peaks or virus positivity. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 11. Key performance benchmarks (for a well-run lab) โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ€ข Surface-sterilisation contamination โ‰ค5 % โ€ข Stage I to II establishment rate โ‰ฅ90 % โ€ข Multiplication factor โ‰ฅ3.5 SHOOTS / explant / 4 wks โ€ข Rooting success โ‰ฅ90 % in โ‰ค18 d โ€ข Acclimatisation survival โ‰ฅ85 % โ€ข Genetic conformity 98 % (SSR) over 12 subcultures โ€ข Virus-indexing pass rate 100 % โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ 12. References & further reading โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ โ€ข Monthony, A. S., et al. 2021. โ€œA review of tissue culture and micropropagation protocols for Cannabis sativa.โ€ Plant Cell Tiss Organ Cult 146: 231โ€“249. โ€ข Lata, H., et al. 2016. โ€œIn vitro plant regeneration and micropropagation of Cannabis sativa.โ€ Plant Biotech J 14: 1389โ€“1400. โ€ข Chandra, S., et al., eds. 2017. โ€œCannabis sativa: Botany and Biotechnology.โ€ Springer. โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ End of SOP package โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€ This framework should let a licensed facility build a validated, audit-ready tissue-culture programme, while providing enough flexibility to adjust PGR levels, subculture intervals, or storage strategies for specific chemotypes or local regulatory demands. Good luck, and always align lab practice with your jurisdictionโ€™s hemp/cannabis directives and biohazard rules.
2 likes
comments
Share
10
Week 10. Flowering
6mo ago
ATLien415 PURPLE OR RED STEMS IN CANNABIS Understanding when they are harmless and when they signal a problem, plus practical ways to tell the difference Biochemical background Anthocyanins, mostly cyanidin and pelargonidin derivatives, are responsible for purple or red hues. They are produced through the phenylpropanoid pathway and stored in vacuoles. Accumulation can be driven by genetics, temperature, light intensity, nutrient status, mechanical damage, or excess sugars in the tissue. Color may appear on main stems, lateral branches, petioles, or leaf mid-veins, and the likely cause depends on location and timing. Situations that are usually harmless a. Genetic coloration Some cultivars show purple or red stems from seedling stage onward even in ideal conditions. Pigment is uniform over the whole plant, leaves remain healthy green, and growth is vigorous. b. Natural late-flower color shift Toward the end of bloom, export of sugars from leaves and petioles slows. Sugars build up and promote anthocyanin synthesis, so petioles or leaf veins turn red while buds ripen. No action is needed. c. High light or mild ultraviolet exposure Anthocyanins function as a sunscreen. Upper canopy stems exposed to very bright LED or high-pressure sodium lamps frequently turn purple without any reduction in photosynthetic efficiency. If leaves stay below about thirty Celsius and show no burn, this is considered cosmetic. Situations that require attention a. Magnesium deficiency Interveinal yellowing on lower fan leaves often appears along with purple petioles or stems. Sap or tissue tests will confirm low magnesium. A corrective foliar spray of Epsom salt or adjusting nutrient solution Mg and pH usually clears the problem. b. Phosphorus deficiency or cold nights Older leaves may first look dark bluish green, then turn reddish. Growth rate slows. Low root-zone phosphorus or night temperatures below eighteen Celsius are typical triggers. Raising night temperature and supplying fifty to seventy milligrams per litre of P fixes the issue. c. Excess potassium combined with low calcium Purple coloration limited to upper stems plus tip burn or marginal necrosis on new leaves points to an imbalanced K to Ca ratio. Sap tests show high potassium and low calcium. Flushing the medium and adding calcium nitrate restores balance. d. Boron deficiency Look for purple streaks, brittle hollow stems, and death of top buds. Low boron and root-zone pH above six point eight are common. Add about point one parts per million boron to the feed and correct pH. e. Acute environmental shock Rapid drought, root flooding, or wind stress can temporarily raise abscisic acid, producing transient stem purpling. If stress is relieved, color fades within two to three days. Practical decision guide Step one: Is coloration uniform across the entire plant from an early age? If yes, it is genetic. Step two: Are there leaf symptoms such as chlorosis or necrosis? If yes, run nutrient tests focusing on magnesium, phosphorus, potassium versus calcium, and boron. Step three: Review recent data. Night temperatures below eighteen Celsius or canopy PPFD above twelve hundred micromoles can produce cosmetic anthocyanin. Step four: Check root-zone electrical conductivity, pH, and quick sap readings for Mg, Ca, K. Correct values outside normal ranges. Quick field cues Healthy leaves with good turgor and normal green color suggest cosmetic pigmentation. Brittle stems, slowed growth, or tip burn imply nutrient imbalance. Pigment starting in lower stems and moving upward often signals deficiency, whereas pigment only in upper stems usually relates to light or UV. Leaf temperature measurements are useful; leaves that run more than four Celsius above air temperature indicate photo stress rather than deficiency. Summary Purple or red stems are common and often purely aesthetic, especially in pigmented cultivars, during final ripening, or under bright light. They become a diagnostic flag when combined with leaf discoloration, tissue brittleness, slowed growth, or tip burn. Use visual pattern, environmental logs, root-zone measurements, and sap or tissue tests to decide whether intervention is needed.
2 likes
comments
Share
11
Week 11. Flowering
6mo ago
ATLien415 FLUSHING IS A TOOL; NOT A STEP โ€œIf I starve the plant for nitrogen early, the senescence machinery switches on while all tissues are still alive, so even those tiny โ€˜sugarโ€™ leaves embedded in the inflorescence will catabolise their own chlorophyll before harvest. Once the flowers are cut, metabolic activity crashes and whatever chlorophyll is still there is essentially frozen in, so the pre-harvest window is the only realistic time to purge it.โ€ Letโ€™s walk through the physiology step-by-step, look at what actually happens in the innermost sugar leaves, and then quantify how much chlorophyll can truly be degraded during a typical flush. Signal for senescence vs. actual chlorophyll catabolism โ€ข Nitrogen or potassium withdrawal indeed up-regulates the classic โ€œstay-greenโ€ (SGR) and โ€œpheophorbide-a oxygenaseโ€ (PaO) genes in leaves within 24 h. โ€ข However, transcriptional activation is strongest in large source leaves that are already exporting nutrients. Sugar leaves embedded in dense buds behave more like sink or maintenance leaves: low light, low stomatal conductance, smaller N pool, slower senescence signal transduction. โ€ข In practice, qPCR on dissected buds shows a 3- to 6-fold lower SGR expression in interior sugar leaves than in exterior fan leaves after seven days of N deprivation (van der Meulen, 2021). Kinetics of chlorophyll breakdown in live tissue โ€ข Once SGR/PaO are active, 70 % of total chlorophyll-a can disappear from a fan leaf in 3โ€“5 days at 25 ยฐC. โ€ข In interior sugar leaves the rate is an order of magnitude slower (tยฝ โ‰ˆ 3โ€“4 days instead of ~8 h) because: โ€“ Limited light (PaO is light-responsive). โ€“ Lower enzyme concentration. โ€“ Higher local COโ‚‚ and humidity suppress ROS formation that helps drive the pathway. โ€ข Seven-day flush therefore removes perhaps 20-30 % of chlorophyll from hidden sugar leaves, not 70-80 %. Fourteen-day flush gets you to ~40-50 %, but by then biomass loss can be โ‰ฅ10 %. Transport of catabolites out of the bud โ€ข Chlorophyll is not just de-magnesiated; the phytol side chain is cleaved and the porphyrin ring is linearised to non-fluorescent chlorophyll catabolites (NCCs). โ€ข Those NCCs are water-soluble and can diffuse, but phloem export from sugar leaves into bracts is weak. Most NCCs remain where they are produced and ultimately get trimmed away with the sugar leaf tissue. โ€ข So even if catabolism happens, it doesnโ€™t necessarily โ€œcleanโ€ the bract tissue that will remain in the finished flower. Post-harvest โ€œfinishโ€ of chlorophyll in cured buds โ€ข As long as water activity (a_w) remains above 0.65โ€“0.70 (roughly 11โ€“12 % moisture), non-enzymatic de-magnesiation and pheophytin formation continue slowly in bracts and sugar-leaf remnants. โ€ข Controlled curing (e.g., 10โ€“12 days, 62 โ†’ 55 % RH) routinely eliminates a further 40โ€“60 % of whatever chlorophyll was left at chop (even without a flush) because cells are still semi-live for the first few days of hanging. โ€ข Thatโ€™s why analytical side-by-side trials see the chlorophyll gap between โ€œflushโ€ and โ€œno-flushโ€ shrink dramatically after a standard cure. Quantitative example (scaled to 100 g trimmed dry flower) Initial chlorophyll (post-trim, no flush)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ‰ˆ 55 mg โ€“ Flush 10 days (model)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ โˆ’18 mg โ€“ Curing 12 days (both treatments)โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ โˆ’24 mg Net chlorophyll at sale: โ€ข No-flushโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ โ‰ˆ 31 mg โ€ข 10-day flushโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ โ‰ˆ 13 mg Difference โ‰ˆ 18 mg chlorophyll per 100 g flower. Sensory threshold studies in green tea and tobacco put the detection limit for โ€œgrassyโ€ porphyrins at about 0.2 mg kgโปยน mainstream smoke, which corresponds to roughly 15โ€“20 mg chlorophyll per 100 g flower. So the reduction is borderline perceptible...just at the cusp of what experienced smokers might notice. Trade-offs to reach that last 20 mg reduction โ€ข Yield loss: 5โ€“15 % dry weight depending on cultivar and flush length. โ€ข Cannabinoid dilution: plant continues to transpire; mass loss is not purely water. โ€ข Terpene loss: extended time on the stalk under grow-room heat/Air-flow can volatilise monoterpenes faster than they are replenished. โ€ข Labour and fertigation complexity. Alternative strategies when chlorophyll really matters โ€ข โ€œSkeleton trimโ€ at harvest: remove interior sugar leaves with fine hemostats before curing; empirical ~35 % chlorophyll reduction, zero yield hit (but high labour). โ€ข Light-assisted cure: brief 1-2 h/d low-intensity white light in the dry room speeds enzymatic chlorophyllase activity without major terpene loss; borrowed from specialty tea processing. โ€ข Post-cure vacuum tumble with inert granules (rice-hull media) that abrade residual sugar-leaf slivers; measurable drop in both chlorophyll and ash alkalinity. Bottom-line logic check โ€ข Yes, flushing does start chlorophyll breakdown sooner and can reach tissues you canโ€™t physically trim. โ€ข The magnitude of the benefit in finished, properly cured buds is modest and often balanced out by yield and terpene penalties. โ€ข If your market or brand story prizes ultra-low chlorophyll (white-ash joints, light-coloured rosin), flushing can be part of the tool-kit, but it shouldnโ€™t be the only lever as targeted trimming and precise curing offer bigger gains per unit of lost yield.
2 likes
comments
Share
12
Week 12. Flowering
6mo ago
ATLien415 DECARBING DEEP DIVE The chemistry in one sentence Almost all plant-derived cannabinoids initially occur in their acidic form (-COOH attached). Heating (or prolonged storage) cleaves that carboxyl group as COโ‚‚, converting e.g. THCA to ฮ”โน-THC or CBDA to CBD. The reaction is an ordinary, first-order decarboxylation of a ฮฒ-keto acid. Why decarboxylation matters โ€ข Pharmacologyโ€ƒThe neutral forms cross the blood-brain barrier far more readily and bind CBโ‚/CBโ‚‚ receptors with much higher affinity than their acidic precursors. โ€ข Analyticsโ€ƒPotency labels usually quote โ€œtotal THCโ€ or โ€œtotal CBD,โ€ i.e., the sum that would be present after full decarb. โ€ข Formulation stabilityโ€ƒAcidic cannabinoids are oxidatively more stable; once decarboxylated, they are more prone to further reactions (isomerisation, oxidation to CBN, etc.). Thermal kinetics (qualitative) โ€ข Reaction order is close to first-order; rate doubles roughly every 10 ยฐC (Arrhenius behaviour). โ€ข Below ~80 ยฐC the half-life is hours to days; above ~140 ยฐC it is minutes. โ€ข In an open system, high heat drives off terpenes and can scorch lipids; in a sealed system, water generated in situ can retard the reaction by localising heat (endothermic buffering). โ€ข Oxygen, light and any trace acids/bases can create side pathways (oxidation, isomerisation) that compete with pure decarboxylation. Lipids as โ€œvehiclesโ€ (the bioavailability angle) โ€ข Solubilityโ€ƒNeutral cannabinoids are highly lipophilic (log P ~7). Dissolving them in medium-chain triglycerides, olive oil, ghee, etc. keeps them in solution once ingested, bypasses precipitation in gastric fluid, and promotes micelle formation in the gut. โ€ข Lymphatic uptakeโ€ƒLong-chain fats enter the lymph rather than the portal vein, partially avoiding first-pass metabolism and increasing systemic availability. โ€ข Particle sizeโ€ƒEven without emulsifiers, heating the lipid; cannabinoid mixture reduces viscosity and improves molecular dispersion, but true nano-emulsions require high-shear or surfactants. โ€ข Stability trade-offโ€ƒLipid matrices protect against atmospheric oxygen but also provide a hydrophobic environment where leftover acidic cannabinoids decarb slowly at room temperature; changing potency over storage unless refrigerated. Balancing โ€œactivate vs. preserveโ€ โ€ข Terpenes volatilise well below typical decarb temperatures; formulators often separate terpene recovery (e.g., a low-temp vacuum step) from cannabinoid activation, then recombine later. โ€ข Non-enzymatic browning (lipid oxidation, Maillard products with residual sugars) accelerates above ~150 ยฐC and can generate off-flavours and possible toxicants. โ€ข Regulatory testing typically accepts a 5-10 % swing around label claim; over- or under-decarboxylation risks failing that window. Process variables that drive the reaction (conceptually) โ€ข Temperature profile (peak vs. dwell) โ€ข Time at temperature (integrated thermal load) โ€ข Physical state (dry resin vs. lipid slurry vs. alcoholic tincture) โ€ข System openness (sealed jar retains volatiles and moisture; open pan loses them) โ€ข Agitation (improves heat transfer, reduces hot-spots) โ€ข Headspace atmosphere (nitrogen or COโ‚‚ blanket limits oxidation) Analytical confirmation (how labs verify success) โ€ข HPLC with UV or MS detection distinguishes acidic and neutral cannabinoids without requiring derivatisation. โ€ข A fully decarbed concentrate will show 2 % of the original acid peak. โ€ข Karl-Fischer water and peroxide-value tests are sometimes run on lipid infusions to monitor degradation. Safety / compliance notes (theory only) โ€ข Federal hemp rule in the U.S. is still โ€œฮ”โน-THC โฉฝ 0.3 % dry weight.โ€ Decarbing CBD-rich hemp can push it over that limit if trace THCA converts. โ€ข Food-grade lipids and handling temperatures must remain below their smoke points to avoid polycyclic aromatic hydrocarbons. โ€ข Closed-jar heating builds pressure; industrial practice uses pressure-rated reactors with rupture discs or, at lab scale, vented vessels under fume hoods. Why some people under-decarb intentionally โ€ข Acidic cannabinoids (especially CBDA) have anti-inflammatory activity distinct from their neutral counterparts. โ€ข Retaining 10โ€“20 % acid fraction can smooth the subjective onset and extend shelf stability. โ€ข Marketing narratives: โ€œraw,โ€ โ€œlive,โ€ or โ€œwhole-plantโ€ concentrates lean on partial decarb to support those claims. Key conceptual takeaway Decarboxylation is a temperature-time trade-off governed by basic chemical kinetics; embedding cannabinoids in a lipid doesnโ€™t change the reaction order, but it does (a) improve eventual oral absorption and (b) modulate both volatility and side reactions. Any practical protocol has to decide where on the continuum -rapid/complete activation versus gentle/preservative heating; it wants to land, then confirm the outcome analytically.
2 likes
comments
Share
13
Week 13. Flowering
6mo ago
ATLien415 ISO-SHIFTING GENERAL OVERVIEW Below is a strictly theoretical overview of โ€œiso-shiftingโ€ (isomerisation) of cannabinoids that can happen under nothing more exotic than heat, time and, in some situations, elevated pressure. No step-by-step recipe is included; the aim is simply to explain why such rearrangements occur, what molecules can emerge, why people sometimes try to promote or suppress them, and what the practical and regulatory nuances tend to be. What โ€œisomer shiftingโ€ means in the cannabinoid context โ€ข Cannabinoids share a common Cโ‚‚โ‚ scaffold but differ in the position of double bonds, the opening or closing of the central ring, or the presence/absence of an additional oxygen. โ€ข When that scaffold is heated, its ฯ€-bonds can migrate (or the ring can open/close) via acid- or base-catalysed mechanisms; or, much more slowly, by thermal rearrangement alone. โ€ข The most widely cited natural example is the slow conversion of cannabidiolic acid (CBDA) to ฮ”โน-tetrahydrocannabinolic acid (ฮ”โน-THCA) in ageing plant material; another is the indoor โ€œpurple punchโ€ of ฮ”โน-THC drifting toward ฮ”โธ-THC in stored concentrates. Thermodynamic vs. kinetic control โ€ข A molecule heated in a closed system eventually favours the lowest-energy (most stable) isomeric mix compatible with that temperatureโ€”this is thermodynamic control. โ€ข If the system is open or the temperature spike is brief, you may trap a non-equilibrium distribution; kinetic control. โ€ข Cannabinoid systems are rarely at full thermodynamic equilibrium under ordinary curing or storage conditions because the activation energies are high; however, even slow drift can be noticeable over months. Role of temperature and pressure โ€ข Temperature provides the energy required to cross isomerisation barriers (~100โ€“180 kJ molโปยน for typical ฮ”โนโ†’ฮ”โธ shifts). โ€ข Pressure per se is less influential on the chemistry, but sealing a vessel removes oxygen (retards oxidation) and retains volatile terpenes, indirectly affecting reaction rates and sensory profile. โ€ข Prolonged mild heat (e.g., during low-temperature โ€œcannabis butterโ€ preparation or warm-room curing) can slowly move a cannabinoid mix, but detectable changes generally demand daysโ€“weeks unless a catalyst is present. Potential outcomes (examples, not exhaustive) โ€ข ฮ”โน-THC ฮ”โธ-THC or ฮ”โท-THC via double-bond migration. โ€ข CBD โ†’ ฮ”โน-THC โ†’ CBN cascade (the last step requires oxidation). โ€ข Formation of minor โ€œexoโ€ isomers (e.g., exo-THC) under higher heat or with certain catalysts. โ€ข Generation of non-classical by-products such as olivetol or terpeneโ€“cannabinoid adducts, which may have little data regarding safety or effect. Why someone might want (or not want) isomer drift BENEFITS sought by some formulators โ€ข Tailoring psychoactivity or shelf-life; ฮ”โธ-THC is less prone to oxidation than ฮ”โน-THC. โ€ข Creating a broader entourage of minor cannabinoids without expensive chromatography. โ€ข Possible compliance angles in jurisdictions that regulate specific isomers differently. DRAWBACKS/risks โ€ข Loss of target potency (e.g., therapeutic CBD turning into psychoactive THC). โ€ข Increased assay complexity: standard HPLC methods may mis-quantify some isomers. โ€ข Unknown toxicology of trace by-products formed under heat. โ€ข Regulatory exposure: in many regions the presence of any psychoactive THC isomer can shift a product from โ€œhempโ€ to a controlled substance regardless of starting material. Analytical and quality-control considerations โ€ข Routine potency panels (HPLC-UV) can separate ฮ”โธ- and ฮ”โน-THC but may miss co-eluting degradants; mass-spectrometric confirmation is recommended. โ€ข Chiral chromatography is sometimes required to distinguish enantiomeric THC isomers produced at high heat. โ€ข Storage studies (accelerated at 40 ยฐC or real-time at 25 ยฐC) help quantify drift over shelf-life. Mitigation or encouragement (general factors) โ€ข pH: even trace acids or bases catalyse isomerisation by orders of magnitude; why food-grade acids used in gummies, for example, can shift cannabinoid profiles during cooking or storage. โ€ข Light: UV can photo-isomerise cannabinoids directly or produce radicals that assist rearrangement. โ€ข Oxygen: promotes oxidation (CBD โ†’ ฮ”โน-THC โ†’ CBN) but is not required for simple ฮ”โน โ‡Œ ฮ”โธ double-bond migration. โ€ข Matrix effects: sugars, lipids, terpenes and residual solvents can all modulate reaction pathways by solvating intermediates or altering local polarity. Regulatory and labeling nuance โ€ข Many jurisdictions regulate ฮ”โน-THC specifically but ignore or have only recently begun to regulate other THC isomers. โ€ข GMP/GACP cannabis facilities therefore monitor isomer drift both for psychoactivity control and to ensure label accuracy. โ€ข Finished-product specifications increasingly include โ€œtotal psychoactive THCโ€ (sum of all known active isomers) to stay ahead of evolving rules. Take-away points โ€ข Heat- and time-driven isomerisation is real but usually slow without a catalyst. โ€ข Whether drift is beneficial or deleterious depends on the product goal (pharmaceutical purity vs. artisanal complexity). โ€ข Analytic vigilance is essential because minor structural changes can alter pharmacology, legal status, and consumer experience. โ€ข When designing a curing or storage protocol, think in terms of energy barriers, catalyst presence, and the desired balance of kinetic vs. thermodynamic control. This overview should give you the conceptual tools to recognise, measure, and rationalise isomer shifts in cannabinoid materials; whether you want to exploit them for product differentiation or suppress them to keep a tight potency spec.
2 likes
comments
Share

Login

1 comment
Sort by
popularity
popularity
newest
oldest
yan402
yan402 commentedweek 56mo ago
Love the information growmie, thank you for a real nice diary, I'm bookmarking this๐Ÿ™โ™ฅ๏ธ
Enjoying this diary? Follow for more updates!
ATLien415ATLien415
Follow Author
OR
SOP LibrarySOP Library
Follow Diary
Prefer the old Diary view?
Go back to the old Diary view