Buds have tiny little trichomes already. 😮Not the good kind of course, but still.
The green pigment in leaves is chlorophyll, which absorbs red and blue light from sunlight. Therefore, the light the leaves reflect is diminished in red and blue and appears green. The molecules of chlorophyll are large (C55H70MgN4O6). They are not soluble in the aqueous solution that fills plant cells. Instead, they are attached to the membranes of disc-like structures, called chloroplasts, inside the cells. Chloroplasts are the site of photosynthesis, the process in which light energy is converted to chemical energy. In chloroplasts, the light absorbed by chlorophyll supplies the energy used by plants to transform carbon dioxide and water into oxygen and carbohydrates, which have a general formula of Cx(H2O)y.
In this endothermic transformation, the energy of the light absorbed by chlorophyll is converted into chemical energy stored in carbohydrates (sugars and starches). This chemical energy drives the biochemical reactions that cause plants to grow, flower, and produce seed.
Chlorophyll is not a very stable compound; bright sunlight causes it to decompose. To maintain the amount of chlorophyll in their leaves, plants continuously synthesize it. The synthesis of chlorophyll in plants requires sunlight and warm temperatures. Therefore, during summer chlorophyll is continuously broken down and regenerated in the leaves.
Another pigment found in the leaves of many plants is carotene. Carotene absorbs blue-green and blue light. The light reflected from carotene appears yellow. Carotene is also a large molecule (C40H36) contained in the chloroplasts of many plants. When carotene and chlorophyll occur in the same leaf, together they remove red, blue-green, and blue light from sunlight that falls on the leaf. The light reflected by the leaf appears green. Carotene functions as an accessory absorber. The energy of the light absorbed by carotene is transferred to chlorophyll, which uses the energy in photosynthesis. Carotene is a much more stable compound than chlorophyll. Carotene persists in leaves even when chlorophyll has disappeared. When chlorophyll disappears from a leaf, the remaining carotene causes the leaf to appear yellow.
A third pigment, or class of pigments, that occur in leaves are the anthocyanins. Anthocyanins absorb blue, blue-green, and green light. Therefore, the light reflected by leaves containing anthocyanins appears red. Unlike chlorophyll and carotene, anthocyanins are not attached to cell membranes but are dissolved in the cell sap. The color produced by these pigments is sensitive to the pH of the cell sap. If the sap is quite acidic, the pigments impart a bright red color; if the sap is less acidic, its color is more purple. Anthocyanin pigments are responsible for the red skin of ripe apples and the purple of ripe grapes. A reaction between sugars and certain proteins in cell sap forms anthocyanins. This reaction does not occur until the sugar concentration in the sap is quite high. The reaction also requires light, which is why apples often appear red on one side and green on the other; the red side was in the sun and the green side was in shade.
During summer, the leaves are factories producing sugar from carbon dioxide and water using by the action of light on chlorophyll. Chlorophyll causes the leaves to appear green. (The leaves of some trees, such as birches and cottonwoods, also contain carotene; these leaves appear brighter green because carotene absorbs blue-green light.) Water and nutrients flow from the roots, through the branches, and into the leaves. Photosynthesis produces sugars that flow from the leaves to other tree parts where some of the chemical energy is used for growth and some is stored. The shortening days and cool nights of fall trigger changes in the tree. One of these changes is the growth of a corky membrane between the branch and the leaf stem. This membrane interferes with the flow of nutrients into the leaf. Because the nutrient flow is interrupted, the chlorophyll production in the leaf declines and the green leaf color fades. If the leaf contains carotene, as do the leaves of birch and hickory, it will change from green to bright yellow as the chlorophyll disappears. In some trees, as the sugar concentration in the leaf increases, the sugar reacts to form anthocyanins. These pigments cause the yellowing leaves to turn red. Red maples, red oaks, and sumac produce anthocyanins in abundance and display the brightest reds and purples in the fall landscape.
The range and intensity of autumn colors is greatly influenced by the weather. Low temperatures destroy chlorophyll, and if they stay above freezing, promote the formation of anthocyanins. Bright sunshine also destroys chlorophyll and enhances anthocyanin production. Dry weather, by increasing sugar concentration, also increases the amount of anthocyanin. So the brightest autumn colors are produced when dry, sunny days are followed by cool, dry nights. The secret recipe. Nature knows best. Normally I'd keep a 10-degree swing between day and night but ripening will see the gap increase dramatically on this one.
Magnesium is the element that makes chlorophyll green, as it sits at the center of the chlorophyll molecule and is essential for its structure and function; therefore, without magnesium, chlorophyll wouldn't be able to capture sunlight for photosynthesis, resulting in a loss of green color in plants.
Magnesium is the central atom in the chlorophyll molecule. Nitrogen forms the ring around the core. The presence of magnesium in chlorophyll is what gives plants their green color. While nitrogen is also important for plant growth, it is not directly responsible for chlorophyll's green color; it is a component of the chlorophyll molecule but not the central atom.
The resonant frequency of pure magnesium is 4,620 Hz, If a guitar string is plucked and we hear a sound, it is not too difficult for the human mind to associate this sound with the vibration of the guitar string. With color, it is quite different. It is difficult for us to conceive that the color of a substance is not an inherent property of the substance itself, but an indication picked up by our senses of that substance's ability to absorb or reflect the light which happens to be shining on it at that moment. Neither the matter nor the light is colored. What happens is that the brain learns to differentiate between the frequencies reflected or transmitted by the substance the eyes are focused on. The same thing happens with sound.
When discussing the "frequency" of magnesium in terms of light, it refers to the wavelength of light emitted or absorbed by magnesium atoms, which is primarily around 285.2nm UV-B.
Key points about magnesium and its wavelength:
Absorption wavelength:
The photoelectric effect of 285 nanometers (nm) ultraviolet (UV) light on a metal surface causes electrons to be ejected with a maximum kinetic energy of 1.40 electron volts (eV).
The dominant emission wavelength of a nitrogen laser, which is often used to represent the "frequency" of nitrogen in terms of wavelength, is 337 nanometers (nm) UV-A.
The characteristic frequency of a nitrogen molecule is typically found in the ultraviolet range, with a wavelength of around 75 nanometers (nm). Also UV.