Likes
Comments
Share
@Nicogreen
Follow
Fuldstændig vanvittigt der har været så meget stress at jeg har haft glemt hende her hun har det satme sygt godt nu takket være dygtig brug af gødning plus at jeg ikke har haft overvandt. 😉. MEN JEG HAR jo stadig lang vej til den færdig
Likes
4
Share
sixth week Veg, the ladies are doing well again they seem to recover! they got a new home again and 2 liters of water every 5 days
Processing
Likes
5
Share
Plant is doing amazing! This is my first grow & I am so excited , I’m in the process of practicing LST , I am not the best but you learn as you go! Let me know what you all think! She seems healthy to me
Likes
10
Share
Some issues with soil being too wet. But we have hit preflower on Christmas.
Likes
4
Share
@LAShugars
Follow
She’s a little sensitive to nutrients. Shes had some light nutrients but very light. Mostly Ph’d water. Going to give her the full Canna coco line tomorrow and introduce a pk booster but low streangth
Processing
Likes
5
Share
Gagarin is comin' ___)))))
Likes
9
Share
Allora ragazzi?! Come va? Spero bene come questa cucciolotta di Fast Buds 👍🏽 .... Ma qualcuno di voi ha riconosciuto questo seme misterioso? Io qualche idea ce l'avrei, e voi? 🎄😘
Likes
39
Share
4/15/25 Things are progressing nicely. Some plants dont seem to be doing too much but 3 of them or so that are really standing out. Im curious if some of these are going to be longer flowering time than anticipated with the very obvious sativa dominant plants.
Likes
11
Share
Really looking forward to flipping these ladies next week
Likes
22
Share
@Damonkey
Follow
All grown with love under a platinum p900 grow light using advanced nutrients. I’ll try and fill all the previous weeks in as I go but right now I am up to the 3rd week in bloom🤘🏻😬🤘🏻 Triple F by hydro-tops added to nute mix once or twice per week Blackstrap Molasses added to nute mix once or twice per week oh there’s a California light works LED in there too solar storm 220 bloom booster CO2 provided by The Exhale Homegrown CO2
Likes
22
Share
One plant hanging, few days on the last 3. Back soon with a harvest.
Likes
134
Share
@Wastent91
Follow
Ehy ragazzi qua tutto bene spero anche a voi lo stesso, le piante di anesia sono magnifiche! Profumi di agrumi della Red pudding e dei buds duri come la roccia! Ho dovuto provvedere a legare tutti i rami con del fil di ferro per sostenere il peso crescente delle cime, purtroppo si vede che all inizio del ciclo non avevo ventilatori etc per poter addestrare i rami in modo che diventassero più solidi e stabili, ora in vece il peso volume di queste cime mi sta piegando l intera pianta! Davvero delle genetiche eccezionali! Con dei profumi davvero complessi da descrivere e non vedo l ora che continuino a maturare per poi avere un finale "di erba perfetta definitiva"! Che purtroppo ancora nn ho mai trovato in circolazione una genetica degna di questo nome... Saranno forse queste di anesia?? Staremo a vedere! Buon 420 a tutti e buon anno nuovo! 😸💪😺🔥💨😎🌱🌿🌲🧑‍🌾💗
Likes
184
Share
Germination date 🌱 12/07/2021 Day 29 12/08/2021 Strain 🍁 SinCity seeds YUZU SORBET (Purple yuzu x whitenightmare) THC% • Unknown 💡 Mars Hydro FC4800 • Power draw 480W + 5% • Max coverage 5 x 5 • LED 2070pcsSamsungLM30B1&Osram660nm • Max Yield 2.5g / watt • Noise level 0 DB • Removable Driver +2m cable • Daisy chain (multiple lights) https://marshydroled.co.uk/products/mars-hydro-fc-4800-led-grow-light-samsunglm301b-commercial-greenhouse-medical-indoor-kit 🇬🇧 https://www.mars-hydro.com/buy-fc-4800-480w-4x4-energy-saving-full-spectrum-commercial-led-grow-light-mars-hydro-for-sale 🇺🇸 PROMO CODE • (ORG420) DISCOUNT 👍🏻 marshydroled.com ⛺ Mars Hydro 120 x 120 x 200cm 📤📥 AC infinity 6inch 💧 10lt dehumidifier ❄️ 3.1kw air con system 💉 Nutrients GreenBuzzLiquids Organic Grow Liquid • 1-4ml until 2wk flower Organic Bloom Liquid • 2-4ml flower stage Organic More PK • 2-4ml +wk3 of flower Organic Calmag • 1-2ml/lt whole grow Fast Plants Spray • first 3days at night lights off More Roots • 2-5ml veg +2wks flower Fast Buds • 5ml +wk2 of veg until 1wk flower Humic Acid Plus • 2-5ml whole grow Growzyme • 2-5ml whole grow Big Fruits • 2-5ml flower stage Clean Fruits • 5ml flush 1wk Ph powder Root Gel Living Organics PROMO CODE • organicnature420 15% off ✌️🏼 https://greenbuzzliquids.com/ 🥥 Growing Media • Coco Coir Notes 📝 Remember I have promo codes for both greenbuzzliquids.com and marshydroled.com Both proving how good they are. Any questions slide me a message. Grows going awesome seeing some decent growth now. Stay tuned Happy growing fam ❤️🌱🍁👍🏻
Likes
11
Share
@Njanne
Follow
The war against mildew rages on. I will not lose. We are almost to the finish line... Stay tuned!! The second PK plant - the green one - is not suffering the mildew infection, the buds are huge and fat! Its a real trade-off and the purple PK is not easy to grow.
Likes
40
Share
Likes
69
Share
@TOTEM
Follow
That’s impressive. This strain is amazing. Couldn’t be happier. Will keep going with this nutrient schedule until the two Royal Highness grow a bit more. I should do some LST asap because there are lot of hidden and trapped leaves under the bigger ones. Update: Did some LST to uncover the hidden leaves. I’m just a bit scared about how big she will get after this.
Likes
25
Share
ANTHOCYANIN production is primarily controlled by the Cryptochrome (CR1) Photoreceptor ( !! UV and Blue Spectrums are primary drivers in the production of the pigment that replaces chlorophyll, isn't that awesome! 1. Diverse photoreceptors in plants Many civilizations, including the sun god of ancient Egypt, thought that the blessings of sunlight were the source of life. In fact, the survival of all life, including humans, is supported by the photosynthesis of plants that capture solar energy. Plants that perform photosynthesis have no means of transportation except for some algae. Therefore, it is necessary to monitor various changes in the external environment and respond appropriately to the place to survive. Among various environmental information, light is especially important information for plants that perform photosynthesis. In the process of evolution, plants acquired phytochrome, which mainly receives light in the red light region, and multiple blue light receptors, including his hytropin and phototropin, in order to sense the light environment. .. In addition to these, an ultraviolet light receptor named UVR8 was recently discovered. The latest image of the molecular structure and function of these various plant photoreceptors (Fig. 1), focusing on phytochrome and phototropin. Figure 1 Ultraviolet-visible absorption spectra of phytochrome, cryptochrome, phototropin, and UVR8. The dashed line represents each bioactive absorption spectrum. 2. Phytochrome; red-far red photoreversible molecular switch What is phytochrome? Phytochrome is a photochromic photoreceptor, and has two absorption types, a red light absorption type Pr (absorption maximum wavelength of about 665 nm) and a far-red light absorption type Pfr (730 nm). Reversible light conversion between the two by red light and far-red light, respectively(Fig. 1A, solid line and broken line). In general, Pfr is the active form that causes a physiological response. With some exceptions, phytochrome can be said to function as a photoreversible molecular switch. The background of the discovery is as follows. There are some types of plants that require light for germination (light seed germination). From that study, it was found that germination was induced by red light, the effect was inhibited by subsequent far-red light irradiation, and this could be repeated, and the existence of photoreceptors that reversibly photoconvert was predicted. In 1959, its existence was confirmed by the absorption spectrum measurement of the yellow sprout tissue, and it was named phytochrome. Why does the plant have a sensor to distinguish between such red light and far-red light? There is no big difference between the red and far-red light regions in the open-field spectrum of sunlight, but the proportion of red light is greatly reduced due to the absorption of chloroplasts in the shade of plants. Similar changes in light quality occur in the evening sunlight. Plants perceive this difference in light quality as the ratio of Pr and Pfr, recognize the light environment, and respond to it. Subsequent studies have revealed that it is responsible for various photomorphogenic reactions such as photoperiodic flowering induction, shade repellent, and deyellowing (greening). Furthermore, with the introduction of the model plant Arabidopsis thaliana (At) and the development of molecular biological analysis methods, research has progressed dramatically, and his five types of phytochromes (phyA-E) are present in Arabidopsis thaliana. all right. With the progress of the genome project, Fi’s tochrome-like photoreceptors were found in cyanobacteria, a photosynthetic prokaryotes other than plants. Furthermore, in non-photosynthetic bacteria, a homologue molecule called bacteriophytochrome photoreceptor (BphP) was found in Pseudomonas aeruginosa (Pa) and radiation-resistant bacteria (Deinococcus radiodurans, Dr). Domain structure of phytochrome molecule Phytochrome molecule can be roughly divided into N-terminal side and C-terminal side region. PAS (Per / Arndt / Sim: blue), GAF (cGMP phosphodiesterase / adenylyl cyclase / FhlA: green), PHY (phyto-chrome: purple) 3 in the N-terminal region of plant phytochrome (Fig. 2A) There are two domains and an N-terminal extension region (NTE: dark blue), and phytochromobilin (PΦB), which is one of the ring-opening tetrapyrroles, is thioether-bonded to the system stored in GAF as a chromophore. ing. PAS is a domain involved in the interaction between signal transduction-related proteins, and PHY is a phytochrome-specific domain. There are two PASs and her histidine kinase-related (HKR) domain (red) in the C-terminal region, but the histidine essential for kinase activity is not conserved. 3. Phototropin; photosynthetic efficiency optimized blue light receptor What is phototropin? Charles Darwin, who is famous for his theory of evolution, wrote in his book “The power of move-ment in plants” published in 1882 that plants bend toward blue light. Approximately 100 years later, the protein nph1 (nonphoto-tropic hypocotyl 1) encoded by one of the causative genes of Arabidopsis mutants causing phototropic abnormalities was identified as a blue photoreceptor. Later, another isotype npl1 was found and renamed phototropin 1 (phot1) and 2 (phot2), respectively. In addition to phototropism, phototropin is damaged by chloroplast photolocalization (chloroplasts move through the epidermal cells of the leaves and gather on the cell surface under appropriate light intensity for photosynthesis. As a photoreceptor for reactions such as escaping to the side of cells under dangerous strong light) and stomata (reactions that open stomata to optimize the uptake of carbon dioxide, which is the rate-determining process of photosynthetic reactions). It became clear that it worked. In this way, phototropin can be said to be a blue light receptor responsible for optimizing photosynthetic efficiency. Domain structure and LOV photoreaction of phototropin molecule Phototropin molecule has two photoreceptive domains (LOV1 and LOV2) called LOV (Light-Oxygen-Voltage sensing) on the N-terminal side, and serine / on the C-terminal side. It is a protein kinase that forms threonine kinase (STK) (Fig. 4Aa) and whose activity is regulated by light. LOV is one molecule as a chromophore, he binds FMN (flavin mononucleotide) non-covalently. The LOV forms an α/βfold, and the FMN is located on a β-sheet consisting of five antiparallel β-strands (Fig. 4B). The FMN in the ground state LOV shows the absorption spectrum of a typical oxidized flavin protein with a triplet oscillation structure and an absorption maximum wavelength of 450 nm, and is called D450 (Fig. 1C and Fig. 4E). After being excited to the singlet excited state by blue light, the FMN shifts to the triplet excited state (L660t *) due to intersystem crossing, and then the C4 (Fig. 4C) of the isoaroxazine ring of the FMN is conserved in the vicinity. It forms a transient accretionary prism with the tain (red part in Fig. 4B Eα) (S390I). When this cysteine is replaced with alanine (C / A substitution), the addition reaction does not occur. The effect of adduct formation propagates to the protein moiety, causing kinase activation (S390II). After that, the formed cysteine-flavin adduct spontaneously dissociates and returns to the original D450 (Fig. 4E, dark regression reaction). Phototropin kinase activity control mechanism by LOV2 Why does phototropin have two LOVs? Atphot1 was found as a protein that is rapidly autophosphorylated when irradiated with blue light. The effect of the above C / A substitution on this self-phosphorylation reaction and phototropism was investigated, and LOV2 is the main photomolecular switch in both self-phosphorylation and phototropism. It turns out that it functions as. After that, from experiments using artificial substrates, STK has a constitutive activity, LOV2 functions as an inhibitory domain of this activity, and the inhibition is eliminated by photoreaction, while LOV1 is kinase light. It was shown to modify the photosensitivity of the activation reaction. In addition to this, LOV1 was found to act as a dimerization site from the crystal structure and his SAXS. What kind of molecular mechanism does LOV2 use to photoregulate kinase activity? The following two modules play important roles in this intramolecular signal transduction. Figure 4 (A) Domain structure of LOV photoreceptors. a: Phototropin b: Neochrome c: FKF1 family protein d: Aureochrome (B) Crystal structure of auto barley phot1 LOV2. (C) Structure of FMN isoaroxazine ring. (D) Schematic diagram of the functional domain and module of Arabidopsis thaliana phot1. L, A’α, and Jα represent linker, A’α helix, and Jα helix, respectively. (E) LOV photoreaction. (F) Molecular structure model (mesh) of the LOV2-STK sample (black line) containing A’α of phot2 obtained based on SAXS under dark (top) and under bright (bottom). The yellow, red, and green space-filled models represent the crystal structures of LOV2-Jα, protein kinase A N-lobe, and C-robe, respectively, and black represents FMN. See the text for details. 1) Jα. LOV2 C of oat phot1-to α immediately after the terminus Rix (Jα) is present (Fig. 4D), which interacts with the β-sheet (Fig. 4B) that forms the FMN-bound scaffold of LOV2 in the dark, but unfolds and dissociates from the β-sheet with photoreaction. It was shown by NMR that it does. According to the crystal structure of LOV2-Jα, this Jα is located on the back surface of the β sheet and mainly has a hydrophobic interaction. The formation of S390II causes twisting of the isoaroxazine ring and protonation of N5 (Fig. 4C). As a result, the glutamine side chain present on his Iβ strand (Fig. 4B) in the β-sheet rotates to form a hydrogen bond with this protonated N5. Jα interacts with this his Iβ strand, and these changes are thought to cause the unfold-ing of Jα and dissociation from the β-sheet described above. Experiments such as amino acid substitution of Iβ strands revealed that kinases exhibit constitutive activity when this interaction is eliminated, and that Jα plays an important role in photoactivation of kinases. 2) A’α / Aβ gap. Recently, several results have been reported showing the involvement of amino acids near the A’α helix (Fig. 4D) located upstream of the N-terminal of LOV2 in kinase photoactivation. Therefore, he investigated the role of this A’α and its neighboring amino acids in kinase photoactivation, photoreaction, and Jα structural change for Atphot1. The LOV2-STK polypeptide (Fig. 4D, underlined in black) was used as a photocontrollable kinase for kinase activity analysis. As a result, it was found that the photoactivation of the kinase was abolished when amino acid substitution was introduced into the A’α / Aβ gap between A’α and Aβ of the LOV2 core. Interestingly, he had no effect on the structural changes in Jα examined on the peptide map due to the photoreaction of LOV2 or trypsin degradation. Therefore, the A’α / Aβ gap is considered to play an important role in intramolecular signal transduction after Jα. Structural changes detected by SAXS Structural changes of Jα have been detected by various biophysical methods other than NMR, but structural information on samples including up to STK is reported only by his results to his SAXS. Not. The SAXS measurement of the Atphot2 LOV2-STK polypeptide showed that the radius of inertia increased from 32.4 Å to 34.8 Å, and the molecular model (Fig. 4F) obtained by the ab initio modeling software GASBOR is that of LOV2 and STK. It was shown that the N lobes and C lobes lined up in tandem, and the relative position of LOV2 with respect to STK shifted by about 13 Å under light irradiation. The difference in the molecular model between the two is considered to reflect the structural changes that occur in the Jα and A’α / Aβ gaps mentioned above. Two phototropins with different photosensitivity In the phototropic reaction of Arabidopsis Arabidopsis, Arabidopsis responds to a very wide range of light intensities from 10–4 to 102 μmol photon / sec / m2. At that time, phot1 functions as an optical sensor in a wide range from low light to strong light, while phot2 reacts with light stronger than 1 μmol photon / sec / m2. What is the origin of these differences? As is well known, animal photoreceptors have a high photosensitivity due to the abundance of rhodopsin and the presence of biochemical amplification mechanisms. The exact abundance of phot1 and phot2 in vivo is unknown, but interesting results have been obtained in terms of amplification. The light intensity dependence of the photoactivation of the LOV2-STK polypeptide used in the above kinase analysis was investigated. It was found that phot1 was about 10 times more photosensitive than phot2. On the other hand, when the photochemical reactions of both were examined, it was found that the rate of the dark return reaction of phot1 was about 10 times slower than that of phot2. This result indicates that the longer the lifetime of S390II, which is in the kinase-activated state, the higher the photosensitivity of kinase activation. This correlation was further confirmed by extending the lifespan of her S390II with amino acid substitutions. This alone cannot explain the widespread differences in photosensitivity between phot1 and phot2, but it may explain some of them. Furthermore, it is necessary to investigate in detail protein modifications such as phosphorylation and the effects of phot interacting factors on photosensitivity. Other LOV photoreceptors Among fern plants and green algae, phytochrome ɾphotosensory module (PSM) on the N-terminal side and chimera photoreceptor with full-length phototropin on the C-terminal side, neochrome (Fig. There are types with 4Ab). It has been reported that some neochromes play a role in chloroplast photolocalization as a red light receiver. It is considered that fern plants have such a chimera photoreceptor in order to survive in a habitat such as undergrowth in a jungle where only red light reaches. In addition to this, plants have only one LOV domain, and three proteins involved in the degradation of photomorphogenesis-related proteins, FKF1 (Flavin-binding, Kelch repeat, F-box 1, ZTL (ZEITLUPE)), LKP2 ( There are LOV Kelch Protein2) (Fig. 4Ac) and aureochrome (Fig. 4Ad), which has a bZip domain on the N-terminal side of LOV and functions as a gene transcription factor. 4. Cryptochrome and UVR8 Cryptochrome is one of the blue photoreceptors and forms a superfamily with the DNA photoreceptor photolyase. It has FAD (flavin adenine dinucle-otide) as a chromophore and tetrahydrofolic acid, which is a condensing pigment. The ground state of FAD is considered to be the oxidized type, and the radical type (broken line in Fig. 1B) generated by blue light irradiation is considered to be the signaling state. The radical type also absorbs in the green to orange light region, and may widen the wavelength region of the plant morphogenesis reaction spectrum. Cryptochrome uses blue light to control physiological functions similar to phytochrome. It was identified as a photoreceptor from one of the causative genes of UVR8 Arabidopsis thaliana, and the chromophore is absorbed in the UVB region by a Trp triad consisting of three tryptophans (Fig. 1D). It is involved in the biosynthesis of flavonoids and anthocyanins that function as UV scavengers in plants. Conclusion It is thought that plants have acquired various photoreceptors necessary for their survival during a long evolutionary process. The photoreceptors that cover the existing far-red light to UVB mentioned here are considered to be some of them. More and more diverse photoreceptor genes are conserved in cyanobacteria and marine plankton. By examining these, it is thought that the understanding of plant photoreceptors will be further deepened.
Likes
28
Share
This week marks the 10th and likely final week of my autoflower grow. The buds have really filled out and are covered in a thick layer of trichomes. Most pistils have turned orange/brown, and the plant is giving off a strong, pungent aroma. Under close inspection, the trichomes are mostly cloudy with some beginning to turn amber – a clear sign she’s nearly ready for harvest. The fan leaves have started fading and curling slightly, especially lower down, which is to be expected at this stage. I stopped feeding nutrients around a week ago and have been flushing with just water to clean out any remaining salts. She’s still drinking well and hasn’t shown any major stress signs. Overall, I’m really happy with how this run turned out. She stayed compact, didn’t stretch too much, and produced some dense, frosty buds. I’ll probably gave her 2–3 more days before the chop – just to let a few more amber trichomes develop for that nice relaxing effect So i cutet her 2 days later because of the to high humidity , because i dont want bud
Likes
4
Share
@4F1M6
Follow
Man these ladies are stacking javelins! Colas galore throughout their canopy. Sexy and healthy! 1 lady got a touch taller than the other 2. Shes been super cropped again to reduce her height and even out the canopy a bit. But the other 2 are getting quality exposure none the less. They got treated with Dr zhymes as a preventative. That will basically wrap up their treatments ...possibly once more with lost coast. Upped the pk intake as they are blooming strong now. Gotta keep those engines well fuelled. Response was stellar. Happy happy happy ladies. Unti next update. Happy growing and stay lit fam.