Vote Now 🏆 for the Grow Awards 2025!
Likes
Comments
Share
Day#29Update : I took off about 8-10 fan leaves although I really did not want to take anything . I pony-tailed her main top although I wanted to pony-tail each of her tops . I’m hoping this second lite defoliation establishes those lateral branches letting them become symmetrical with the main top . If this happens I’ll pony-tail each branch for a day or two then when I untie them I’ll top each branch . For now that’s the plan , make as many arms “branches” with equal growth to the central “main” branch . Day#30 update : she’s been ponytailed for an entire 24hrs which is a 1st she always breaks out of the tie . This makes me happy I timed it better . Usually I ponytail her top when it’s slightly to large/strong so the benefits are short lived at most about 8hrs which still definitely helped those lateral branches reach the light but I was aiming to ponytail her at a smaller growth so that it would remain restrained until I decided to remove it . She’s almost ready for a drink . She could go for one today but I really want to wait until she’s absolutely famished and begging for it . So I’m going to wait another day or two then water her until runoff . The last time she received water was day #24. Day#31Update: well she’s still pony-tailed ! I’m shocked and amused . I’ll let her down finally tomorrow . Made it through an entire month she’s only gotten more beautiful since fixing the VPD issue. I broke and gave her water before she was absolutely begging for it . Mainly to address the low and falling humidity in my tent . I don’t want to lose anymore precious time dealing with issues and setback on those autos finishing up in here . After I last watered the tent day #24 I did a massive leaf defoliation of the flowering girls which dropped the overall tent humidity massively . So I adjusted the intake/exhaust fans as well as the oscillating fan to allow the humidity to rise in the tent . That worked well enough until but as the girls drink slowly the humidity is back falling again into the 45s. I don’t want it in the 40s until buds are swollen . I mixed up a gallon on water and added an ounce of trace micronutrients to it and ph’d it down to 6.4 loaded it into a 1gallon sprayer & sprayed my 3 autos . Having a little less than 1/4 gallon of this full strength solution I decided to see what my Cereal milk plant was made of and gave it to her . I haven’t given any of these girls a full strength dose of anything other than the Gaia Green . At day 42 & Day 35 of the autos in flower I did a too dress of flower nutes & a week later all 3 ladies showed burnt tips so I very well may exacerbate the issue by giving them a full stenches feeding of micronutrients . “Cellie” who went into this 1 gallon pot day#9 is showing what looks hunger signs with the yellowing of the lower leaves . Maybe because I’m letting her go thristy considering there should be 28 days of food in this medium at minimum really even more considering I added more than the recommended amount . So we’ll see. Month 1 Veg went great excited to see what kind of bush she looks like at the end of month 2 and fingers crossed by month 3 she’ll be read to flip to flower and scrog down Day#32 Update: RELEASE FROM PONYTAIL PRISON so to speak 😭. She has so many tops already ! It’s going to be a pleasure and a joy to defoliate her , ponytail all her tops for a couple days , then release the ponytails & top all the main tops once to widen her up some more ! She hasn’t shown signs of stress from that full strength micronutrient feeding I gave her last night so that’s wonderful . She’s going to look absolutely crazy when I strip her bare of a lot of these leaves and ponytail those tops BUT the woman she will be once she fills back out will be worth the temporary tragedy . It will take her relatively 14 days to rebound from the defoliation I’m going to put on her if I go as heavy as I’m planning to .
Likes
68
Share
@Roberts
Follow
Auto Northern Dragon Fuel grew really well in a small potter of a gallon and a half. I unfortunately had too much nitrogen in her system during flowering. This effeced my yield some. The flower that is there has a great cherry wood diesel smell. It was also very frosty and looks potent. I should get several ounces for sure once it is processed. Thank you again Super Sativa Seed Club, and Medic Grow. 🤜🏻🤛🏻🌱❄️ Thank you grow diaries community for the 👇likes👇, follows, comments, and subscriptions on my YouTube channel👇. ❄️🌱🍻 Happy Growing 🌱🌱🌱 https://youtube.com/channel/UCAhN7yRzWLpcaRHhMIQ7X4g.
1
4
Share
@SpliffDoc
Follow
Start of week 3 flower (Day 15) and things seem to be going OK. Slight calcium deficiency, I think I may have overshot the bloom too soon and it's locking out the calcium, I'll cut back slightly and see how she goes. I'm excited to see how this turns out. Hopefully just keep things running smoothly for the next 6 weeks. Ill try and update as much as possible. ✌️
Likes
3
Share
In the last two weeks she has been flushed with phd balanced water 💦. Her bracts seemed to have fully swelled her ratio of trichomes was well over 30% amber she was beginning to fade so that’s when I decided she can’t go any further. She is emitting a deep dank musky toffee aroma the Double kush cake feminised bracts give off a tinted silver look. A true AfghanI kush appearance. The Double kush cake feminised finished at a height of approximately 62cm
Likes
Comments
Share
Likes
Comments
Share
Plants are nearing the finish line. Might not all be quite ready in the next week, but I likely will have to chop them all. I removed some leaves from the center plant (A) and the overfed dark green leaves become obvious.
Likes
25
Share
Gratitude. Gave her another application of Gibberelin, same as before. What can I do to increase the rate of cellular respiration? We are adding more reactants, like glucose. Photosynthetic efficiency is the fraction of light energy converted into chemical energy during photosynthesis in green plants and algae. The simplified chemical reaction can describe photosynthesis 6 H2O + 6 CO2 + energy → C6H12O6 + 6 O2 where C6H12O6 is glucose (which is subsequently transformed into other sugars, starches, cellulose, lignin, and so forth). The value of the photosynthetic efficiency is dependent on how light energy is defined – it depends on whether we count only the light that is absorbed, and on what kind of light is used (see Photosynthetically active radiation). It takes eight (or perhaps ten or more) photons to use one molecule of CO2. The Gibbs free energy for converting a mole of CO2 to glucose is 114 kcal, whereas eight moles of photons of wavelength 600 nm contains 381 kcal, giving a nominal efficiency of 30%. However, photosynthesis can occur with light up to wavelength 720 nm so long as there is also light at wavelengths below 680 nm to keep Photosystem II operating (see Chlorophyll). Using longer wavelengths means less light energy is needed for the same number of photons and therefore for the same amount of photosynthesis. For actual sunlight, where only 45% of the light is in the photosynthetically active wavelength range, the theoretical maximum efficiency of solar energy conversion is approximately 11%. In actuality, however, plants do not absorb all incoming sunlight (due to reflection, respiration requirements of photosynthesis, and the need for optimal solar radiation levels) and do not convert all harvested energy into biomass, which results in a maximum overall photosynthetic efficiency of 3 to 6% of total solar radiation. If photosynthesis is inefficient, excess light energy must be dissipated to avoid damaging the photosynthetic apparatus. Energy can be dissipated as heat (non-photochemical quenching), or emitted as chlorophyll fluorescence. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one) 30% of the in-band photons are lost due to incomplete absorption or photons hitting components other than chloroplasts 24% of the absorbed photon energy is lost due to degrading short wavelength photons to the 700 nm energy level 68% of the used energy is lost in conversion into d-glucose 35–45% of the glucose is consumed by the leaf in the processes of dark and photorespiration Stated another way: 100% sunlight → non-bioavailable photons waste is 47%, leaving 53% (in the 400–700 nm range) → 30% of photons are lost due to incomplete absorption, leaving 37% (absorbed photon energy) → 24% is lost due to wavelength-mismatch degradation to 700 nm energy, leaving 28.2% (sunlight energy collected by chlorophyll) → 68% is lost in conversion of ATP and NADPH to d-glucose, leaving 9% (collected as sugar) → 35–40% of sugar is recycled/consumed by the leaf in dark and photo-respiration, leaving 5.4% net leaf efficiency. Far-red In efforts to increase photosynthetic efficiency, researchers have proposed extending the spectrum of light that is available for photosynthesis. One approach involves incorporating pigments like chlorophyll d and f, which are capable of absorbing far-red light, into the photosynthetic machinery of higher plants. Naturally present in certain cyanobacteria, these chlorophylls enable photosynthesis with far-red light that standard chlorophylls a and b cannot utilize. By adapting these pigments for use in higher plants, it is hoped that plants can be engineered to utilize a wider range of the light spectrum, potentially leading to increased growth rates and biomass production. Green Green light is considered the least efficient wavelength in the visible spectrum for photosynthesis and presents an opportunity for increased utilization. Chlorophyll c is a pigment found in marine algae with blue-green absorption and could be used to expand absorption in the green wavelengths in plants. Expression of the dinoflagellate CHLOROPHYLL C SYNTHASE gene in the plant Nicotiana benthamiana resulted in the heterologous production of chlorophyll c. This was the first successful introduction of a foreign chlorophyll molecule into a higher plant and is the first step towards bioengineering plants for improved photosynthetic performance across a variety of lighting conditions. Photosynthesis by day, Cellular respiration by night. Co2 doesn't change the parameters of the environment that are suitable for the plant. Co2 increases the efficiency with which the plant captures carbon from the air and mixes with water using stored energy from photosyynthesis into carbo(sugar)hydrates(water). Max energy a plant can convert in any one cycle is 40 mole per day at 400 ppm. 60 mole per day at 12-1800 ppm. Notice that light intensity, carbon dioxide concentration, and temperature are the three main factors that impact photosynthesis. Greater light intensity leads to higher photosynthesis rates, as does increased carbon dioxide concentration. Temperature is also directly linked to the rate of respiration Q10 Temperature coefficient. This is a key factor affecting photosynthesis. Low CO2 affects the Calvin Cycle. If CO2 levels are low, rubisco cannot convert RuBP to GP in step one of the Calvin Cycle. This leads to the accumulation of RuBP and an overall slowing of the Calvin Cycle, which results in a fall in the production of TP/GALP. CO2 is not needed at night so turn it off. Nights should be focused on respiration and dealing with excess moisture spat into the air all night long, keeping ambient canopy RH 40-45%. This keeps a constant negative pressure overnight. Oxygen is what a plant needs at night, only oxygen diffuses into the leaves and only carbon dioxide diffuses out. Vpd is just a measure of temperature and humidity. The drier the air the more space it has to spit more moisture out. As soon as those lights go out she is just spitting moisture. All the energy the plant collects during the day must be processed overnight. Grow tents at night reaching upward of 65%RH or thereabouts things start to drift from optimal. If the plant only converts a percent of all the energy it gathered during the day and doesn't process it all that night, the plant keeps a surplus which will detract from the next day's DLI. I was surprised, stunned even at how much more water she needed to maintain the intense daytime cooling. Daytime priority is keeping temps under 86 and hitting a DLI of 40-60moles, supplement CO2. Nighttime is about maxing out the rate of respiration and getting rid of water ASAP. To make use of all the energy stored in the stems the plant needs to convert a lot of the stored energy to sugars then the plant mixes them with nutrients to make more complex cells, more nutrients, and more water until there is no energy left stored in those stems. If we don't optimize night cycle, like everything else with cannabis plants, the entire production of the plant as a whole will bottleneck at the place in the line that is least efficient. At night If you can stick to 40-45%RH, you should keep semi-optimal turgor pressure, negative pressure, and humidity for quick removal of water vapor generated under the stomata. Keeping 40-45 % should mean keeping temps around 73-83 and keeping your VPD in the "green" for most of the flowering period. I kinda think of it like PH, in that 6.5 is not the best for every nutrient but it's about balance across the spectrum of variables. VPD is similar. Becomes very hard to micro-manage if you focus on too many controllers its hard to keep everything perfect always. You can't keep it perfect 100%, all the time, well you can but the electrical cost of doing so very quickly changes your mind as electrical components sensors start fighting each other and cycling 24/7. I made the decision to pack everything the plant will ever need and then some into the soil, letting the plant dictate its own feeding schedule based on the demand the environment places on it.
Likes
Comments
Share
Quite happy with how most of it turned out, even canopy and all, despite the issues. In this week I decided to flush the center plant (A) and switched nutes to Canna, but it was too late already and I was planning to harvest in 2 weeks regardless.
Likes
Comments
Share
Likes
25
Share
The “Secret Hymnody” (sections 17-20) is presented as a litany for worship, to be performed twice each day, at sunrise and sunset. It's interesting to note that while the sunrise worship is performed facing east, the sunset worship is done to the south; Egyptian tradition from Pharaonic times onward saw the west as the direction of death. The usual difficulties with the multiple meanings of the Greek word logos appear in the translation, compounded by Mead's awkward style. Additionally, one of Mead's few evasions can be found in section 12, where he relates the twelve Tormentors to the “twelve types-of-life”. This should more simply, and more accurately, have been translated as “the twelve signs of the Zodiac”. 12x2160=25920 Hermes: Torment the first is this Not-knowing, son; the second one is Grief; the third, Intemperance; the fourth, Concupiscence; the fifth, Unrighteousness; the sixth is Avarice; the seventh, Error; the eighth is Envy; the ninth, Guile; the tenth is Anger; eleventh, Rashness; the twelfth is Malice. These are in number twelve; but under them are many more, my son; and creeping through the prison of the body they force the man that's placed therein to suffer in his senses. But they depart (though not all at once) from him who hath been taken pity on by God; and this it is which constitutes the manner of Rebirth. And… the Reason (Logos). 8. And now, my son, be still and solemn silence keep! Thus shall the mercy that flows on us from God not cease. Henceforth rejoice, O son, for by the Powers of God thou art being purified for the articulation of the Reason (Logos). Gnosis of God hath come to us, and when this comes, my son, Not-knowing is cast out. Gnosis of Joy hath come to us, and on its coming, son, Sorrow will flee away to them who give it room. The Power that follows Joy do I invoke, thy Self-control. O Power most sweet! Let us most gladly bid it welcome, son! How with its coming doth it chase Intemperance away! 9. Now fourth, on Continence I call, the Power against Desire. This step, my son, is Righteousness' firm seat. For without judgement see how she hath chased Unrighteousness away. We are made righteous, son, by the departure of Unrighteousness. Power sixth I call to us - that against Avarice, Sharing-with-all. And now that Avarice is gone, I call on Truth. And Error flees, and Truth is with us. See how [the measure of] the Good is full, my son, upon Truth's coming. For Envy is gone from us; and unto Truth is joined the Good as well, with Life and Light. And now no more doth any torment of the Darkness venture nigh, but vanquished [all] have fled with whirring wings. 10. Thou knowest [now], my son, the manner of Rebirth. And when the Ten is come, my son, that driveth out the Twelve, the Birth in understanding is complete, and by this birth we are made into Gods. Who then doth by His mercy gain this Birth in God, abandoning the body's senses, knows himself [to be of Light and Life] and that he doth consist of these, and [thus] is filled with bliss. 11. Tat: By God made steadfast, father, no longer with the sight my eyes afford I look on things, but with the energy the Mind doth give me through the Powers. In Heaven am I, in earth, in water, air; I am in animals, in plants; I'm in the womb, before the womb, after the womb; I'm everywhere! But further tell me this: How are the torments of the Darkness, when they are twelve in number, driven out by the ten Powers? What is the way of it, Thrice-greatest one? 12. Hermes: This dwelling-place through which we have just passed , my son, is constituted from the circle of the twelve types-of-life, this being composed of elements, twelve in number, but of one nature, an omniform idea. For man's delusion there are disunions in them, son, while in their action they are one. Not only can we never part Rashness from Wrath; they cannot even be distinguished. According to right reason (logos), then, they naturally withdraw once and for all, in as much as they are chased out by no less than ten powers, that is, the Ten. For, son, the Ten is that which giveth birth to souls. And Life and Light are unified there, where the One hath being from the Spirit. According then to reason (logos) the One contains the Ten, the Ten the One.
Likes
25
Share
The ideal PPFD level for seedlings is between 100-300 micromoles per square meter per second (μmol/m²/s). This softer lighting mimics the diffused sunlight of early spring, providing enough energy for seedling-stage plants to develop their initial leaves without overwhelming them. at 48 inches from light sources, the seedlings receive around 150-180μmol/m²/s, as they grow they grow towards the higher levels of ppfd naturally. Urine is a liquid waste product as a result of our kidneys cleaning and filtering our blood. Typically, urine contains around 95% water and the rest are a mix of salts including sodium, potassium and chloride, urea, and uric acid. Due to the high water content in pee, the more you drink, the more you have to go. For a healthy person, human urine typically has a pH of around 6.2 with a range of 5.5-7.0. A person’s diet and alcohol consumption can also affect the pH of their urine. The main organic component of urine is urea, a combination of ammonia and carbon dioxide, which is the byproduct of our bodies breaking down proteins into usable amino acids. Urea is very high in nitrogen, a key ingredient to healthy leafy growth in plants. In addition to being very nitrogen-rich, urine also contains dissolved phosphorus that’s immediately available to plants, making urine a quick-acting fertilizer. If you own a dog, you may be familiar with yellow patches on your lawn where your pet has peed. Dogs and cats excrete fresh urine with a higher quantity of urea than humans do and that can more easily burn a plant upon contact. Human urine contains less urea and thus less ammonia. Despite Bear Grylls drinking urine in his popular survival shows, urine is not sterile. It picks up trace amounts of bacteria as the sterile version passes through the bladder, the urinary tract and comes in contact with the skin. Still, the health risks of using urine are very low because urine does not typically contain pathogens found in feces. Infectious diseases like cholera are spread through water sources contaminated by poop. In areas with poor sanitation, there is no way to separate solid and liquid waste which is why all untreated mixed sewage can pose significant public health risks. Only 10-15% of all nutrition you ingest is absorbed, all the rest is disposed of in the urea of urine, 95% Water, 5% Urea. Human urine consists primarily of water (91% to 96%), with organic solutes including urea, creatinine, uric acid, and trace amounts of enzymes, carbohydrates, hormones, fatty acids, pigments, and mucins, and inorganic ions such as sodium (Na+), potassium (K+), chloride (Cl-), magnesium (Mg2+), calcium (Ca2+), ammonium (NH4+), sulfates (SO42-), and phosphates (e.g., PO43-).1 A Representative Chemical Composition of Urine Water (H2O): 95% Urea (H2NCONH2): 9.3 g/l to 23.3 g/l Chloride (Cl-): 1.87 g/l to 8.4 g/l Sodium (Na+): 1.17 g/l to 4.39 g/l Potassium (K+): 0.750 g/l to 2.61 g/l Creatinine (C4H7N3O): 0.670 g/l to 2.15 g/l Inorganic sulfur (S): 0.163 to 1.80 g/l The pH of human urine ranges from 5.5 to 7, averaging around 6.2. The specific gravity ranges from 1.003 to 1.035. Significant deviations in pH3 Chemical Concentration in g/100 ml urine Water 95 Urea 2 Sodium 0.6 Chloride 0.6 Sulfate 0.18 Potassium 0.15 Phosphate 0.12 Creatinine 0.1 Ammonia 0.05 Uric acid 0.03 Calcium 0.015 Magnesium 0.01 The element abundance depends on diet, health, and hydration level, but human urine consists of approximately: Oxygen (O): 8.25 g/l Nitrogen (N): 8/12 g/l Carbon (C): 6.87 g/l Hydrogen (H): 1.51 g/l Morning piss is best, diluted to 6-10 parts water. Breaking Down Nitrogen Forms & Their Impact: Forms of Nitrogen: Nitrogen, comes in three primary forms: ammonium, nitrate, and urea. Ammonium (NH4+) carries a positive charge, nitrate (NH3–)carries a negative charge, while urea ((NH2)2CO) carries no charge. Natural Processes in Media: Once these nitrogen forms are introduced into the growing media, natural processes kick in. Bacteria play a vital role, converting urea to ammonium or ammonium to nitrate. This latter conversion releases hydrogen ions, increasing media acidity. Urea Conversion: Urea undergoes rapid conversion to ammonium in the soil, usually within two days. Both urea and ammonium are often grouped together and referred to as ammoniacal nitrogen. When plants absorb nitrogen, they typically release a molecule with the same charge to maintain internal pH. This process can also alter the pH of the media surrounding the roots. pH Effects of Nitrogen Uptake: Ammonium (NO4) Uptake and pH: When plants absorb ammonium, they release hydrogen ions (H+) into the media. This increases the acidity of the media over time, decreasing the pH. Nitrate (NO3) Uptake and pH: Plants take up nitrate by releasing hydroxide ions (OH–). These ions combine with hydrogen ions to form water. The reduction in hydrogen ions eventually reduces the media acidity increasing the pH. Nitrate (NO3) Absorption Variations: Sometimes, plants absorb nitrate differently, either by taking in hydrogen ions or releasing bicarbonate. Like hydroxide ions, bicarbonate reacts with hydrogen ions and indirectly raises the media pH. Understanding these processes helps in choosing the appropriate fertilizer to manage media pH. Depending on the nutrients present, the media’s acidity or alkalinity can be adjusted to optimize plant growth. Risks of Ammoniacal Nitrogen: Plants can only absorb a certain amount of nitrogen at a time. However, they have the ability to store excess nitrogen for later use if needed. Nitrate (NO3) vs. Ammonium (NH4): Plants can safely store nitrate, but too much ammonium can harm cells. Thankfully, bacteria in the media convert urea and ammonium to nitrate, reducing the risk of ammonium buildup. Factors Affecting Ammonium (NH4) Levels: Certain conditions like low temperatures, waterlogged media, and low pH can prevent bacteria from converting ammonium. This can lead to toxic levels of ammonium in the media, causing damage to plant cells. Symptoms of Ammonium (NH4) Toxicity: Upward or downward curling of lower leaves depending on plant species; and yellowing between the veins of older leaves which can progress to cell death. Preventing Ammonium (NH4) Toxicity: When it comes to nitrogen breakdown of a nutrient solution, it’s crucial not to exceed 30% of the total nitrogen as ammoniacal nitrogen. Higher levels can lead to toxicity, severe damage, and even plant death. Ideal Nitrogen Ratio for Cannabis: Best Nitrogen (NO3) Ratio: Research shows that medical cannabis plants respond best to nitrogen supplied in the form of nitrate (NO3). This helps them produce more flowers and maintain healthy levels of secondary compounds. Safe Ammonium (NH4) Levels: While high levels of ammonium (NH4) can be harmful to cannabis plants, moderate levels (around 10-30% of the total nitrogen) are are considered most suitable. This level helps prevent leaf burn and pH changes in the media. Nitrogen: nitrate (NO3-) and ammonium (NH4+) Nitrogen is mobile in the plant. When it is in the soil it is mobile as Nitrate NO3– and is immobile as Ammonium NH4+ All those nutrients should be in ionic form, either in the soil or in a nutrient solution. Ions are simply the atomic or molecule form having +ve or –ve charge. As we know, the positive attracts the negative, and the same charge elements will repel each other; this power of charge represents the strength of the element. The positive ions are known as Cation, while negative ions are Anions. The anions want to disperse themselves to even concentrations, so they move from higher concentrations to lower concentrations. As we look at the soil structure, it’s a composition of particles; those particles attract the positive ions (+Ve), repel the Negative ions (-ve), and float freely in the water. This attraction of Cation by the soil particles is called Cation Exchange Capacity (CEC), which measures the number of cations that can be retained by the soil particles. The higher the CEC, the more Cation Nutrients can be stored in the soil. As a result, the higher CEC soils can become more nutrient-rich; also, keep in mind the soil composition is diverse and varies among different soil types.
Likes
67
Share
@Fatnastyz
Follow
11-28 Last week on my veg, saw first hair today. Thought she may be a bit bigger by now, but its coming 💪 She got 1k water yesterday with silica 5ml, cal/mag 3ml, drops of balance 1ml, yucca 1/64 tsp. 1/2 tsp recharge and 1 ounce EM1. 12-1 Water 2k ml. Adjusted lst a bit and stripped her leafs. She been through a lot. I may or may have stunted her a bit. Maybe she will kick in. Waiting a minute before anything else. 12-2 Bumped light to 75%. She should start stretching any day/time. .