2
47
Share
Once again she passes my expectations, late to the show with trichome production. I'm surprised there is purple on the bud, maybe Purpinator does work. I thought I could see hints under the grow lights and thought my eyes were deceiving me, I was just being hopeful. But nah 2 of the 3(under the UV) have developed a beautiful tone of purple. I was never going to bother with a deep freeze but maybe the whole bud will change given conditions, that would be something, fingers crossed. 🤔 was a little skeptical that reducing temps humidity would change density, but it does, buds are solid something I've not been able to achieve before. Rule of thumb is never to surpass 60% RH in the flowering phase and try to progressively reduce it down to 40% in the last 2–3 weeks before harvest. The plant will react as it seeks to protect its flowers, responding by producing denser buds and a higher concentration of resin. Cannabis plants are sensitive to sudden temperature changes, especially in the flowering stage. Extreme heat or cold can impact bud density and overall yields. In nature as a defense mechanism from cold, the plant sensing sudden dips in temperature will attempt to remove the pockets of air within the bud, it achieves this by compacting itself in doing so to better protect itself from cold snaps which are normally indicators in nature that worse weather is on the way. The script to come. Removal of 660nm wavelength is the signal that triggers the plant to accelerate terpenes/flavinoids production in flowers, this is the mechanism the higher plant uses to attract potential pollination from further afield, survival of the species is no joke for the plant, it senses the sky around it has removed all the 660nm, the plant starts to focus on terpenes and flavinoids production if she has not been fertilized by this point she must attract pollination from a further afield. 3-day treatment, ZERO 660nm initiates accumulation, RH kept below 20% (harder than you think)(Dropping temps helps a lot). The plant can sense the humidity drought, the plant will close its stomata to prevent the release of moisture given the conditions. Two highly specialized cells, the guard cells that surround the stomatal pore, can integrate environmental and endogenous signals to control the stomatal aperture and thereby the gas exchange. The uptake of CO2 is associated with a loss of water by leaves. Control of the size of the stomatal aperture optimizes the efficiency of water use through dynamic changes in the turgor of the guard cells. The opening and closing of the stomata are regulated by the integration of environmental signals and endogenous hormonal stimuli. The various factors to which the guard cells respond translate into the complexity of the network of signaling pathways that control stomatal movements. The perception of abiotic stress (RH less than 20%) triggers the activation of signal transduction cascades that interact with or are activated by phytohormones. Among these, abscisic acid (ABA), is the best-known stress hormone released that forces closed the stomata. Terpene levels are the highest just before the sun comes out. Ideally, you want as many terpenes present in your plants as possible when you harvest. Cannabis plants soak up the sun during the day and produce resin and other goodies at night. The plant is at its emptiest from "harvest undesirables" so to speak right before the lights on. Boiling cannabis roots during harvesting slows down the drying process. When you boil cannabis roots, it shocks the plant, closing the stomata on the leaves. This prevents massive moisture loss through the leaves, leaving only the floral clusters actively losing moisture at a reduced pace. I've always run a strict 60/60 and it took almost twice as long to dry to a snap than previous grows where I didn't boil for what it's worth. Chlorophyll is good for the plant but not for you. When you harvest the buds, even after you flush them, if you flush them, they’re still filled with chlorophyll. Freshly cut buds are greener than dried buds because they still contain loads of chlorophyll. However, when rushed through the drying process, the buds dry but retain some chlorophyll, and when you smoke it, you will taste it. Chlorophyll-filled buds are smokable, but they aren’t clean. Slow drying gives the buds enough time and favorable conditions to lose the chlorophyll and sugars, giving you a smoother smoke. How the plant disposes of the chlorophyll and sugars by a process of chemically breaking them down and attaching the decomposed matter once small enough to water molecules which then evaporate back into the ether. Time must be given to the process to break down the chlorophyll and sugars. Think of it like optimizing the environment for decay. Clinical death is the trigger the plant requires to start decomposing and breaking down said chloryphyll. The same way a clone doesn't die when you chop it off, most people hang plant to dry alive providing rh 60% drying slow which is so close to rh 70% (keeping clones alive). Boiling roots 30s clinically kills the plant and begins decomposing the chloryphyll breaking it down. Most people have it hang for the 3_4 days alive, it drys perfectly fine but breaking down chloryphyll to a size small enough to be attached to water molecules takes time. If the plant dries "ready" but only clinically died 12 hours ago well then you are smoking chloryphyll. 72 hours of zero light is a biological self termination trigger. Annoys me when I read people mock the 72 hours of darkness "DOES NOTHING", "POINTLESS". Boil roots or 72 hours dark, pick one otherwise your smoking 90% of the chloryphyll period. Chemical decomposition of chlorophyll must begin simultaneously to the drying process if you want smooth smooth. Then the Formative Mind ([at-oned] with Reason), he who surrounds the spheres and spins them with his whorl, set turning his formations, and let them turn from a beginning boundless unto an endless end. For that, the circulation of these [spheres] begins where it doth end, as Mind doth will. But to the Mind-less ones, the wicked and depraved, the envious and covetous, and those who mured do and love impiety, I am far off, yielding my place to the Avenging Daimon, who sharpening the fire, tormenteth him and addeth fire to fire upon him, and rusheth upon him through his senses, thus rendering him readier for transgressions of the law, so that he meets with greater torment; nor doth he ever cease to have desire for appetites inordinate, insatiately striving in the dark. All the nutrients it could ever need are in abundance, it eats nutrients based on its demand for growth, which is dictated primarily by available light. Plant growth and geographic distribution (where the plant can grow) are greatly affected by the environment. If any environmental factor is less than ideal, it limits a plant's growth and/or distribution. For example, only plants adapted to limited amounts of water can live in deserts. Either directly or indirectly, most plant problems are caused by environmental stress. In some cases, poor environmental conditions (e.g., too little water) damage a plant directly. In other cases, environmental stress weakens a plant and makes it more susceptible to disease or insect attack. Environmental factors that affect plant growth include light, temperature, water, humidity, and nutrition. It's important to understand how these factors affect plant growth and development. With a basic understanding of these factors, you may be able to manipulate plants to meet your needs, whether for increased leaf, flower, or fruit production. By recognizing the roles of these factors, you'll also be better able to diagnose plant problems caused by environmental stress. Water and humidity *Most growing plants contain about 90 percent water. Water plays many roles in plants. It is:* A primary component in photosynthesis and respiration Responsible for turgor pressure in cells (Like the air in an inflated balloon, water is responsible for the fullness and firmness of plant tissue. Turgor is needed to maintain cell shape and ensure cell growth.) A solvent for minerals and carbohydrates moving through the plant Responsible for cooling leaves as it evaporates from leaf tissue during transpiration A regulator of stomatal opening and closing, thus controlling transpiration and, to some degree, photosynthesis The source of pressure to move roots through the soil The medium in which most biochemical reactions take place Relative humidity is the ratio of water vapor in the air to the amount of water the air could hold at the current temperature and pressure. Warm air can hold more water vapor than cold air. Relative humidity (RH) is expressed by the following equation: RH = water in air ÷ water air could hold (at constant temperature and pressure) The relative humidity is given as a percent. For example, if a pound of air at 75°F could hold 4 grams of water vapor, and there are only 3 grams of water in the air, then the relative humidity (RH) is: 3 ÷ 4 = 0.75 = 75% Water vapor moves from an area of high relative humidity to one of low relative humidity. The greater the difference in humidity, the faster water moves. This factor is important because the rate of water movement directly affects a plant's transpiration rate. The relative humidity in the air spaces between leaf cells approaches 100 percent. When a stoma opens, water vapor inside the leaf rushes out into the surrounding air (Figure 2), and a bubble of high humidity forms around the stoma. By saturating this small area of air, the bubble reduces the difference in relative humidity between the air spaces within the leaf and the air adjacent to the leaf. As a result, transpiration slows down. If the wind blows the humidity bubble away, however, transpiration increases. Thus, transpiration usually is at its peak on hot, dry, windy days. On the other hand, transpiration generally is quite slow when temperatures are cool, humidity is high, and there is no wind. Hot, dry conditions generally occur during the summer, which partially explains why plants wilt quickly in the summer. If a constant supply of water is not available to be absorbed by the roots and moved to the leaves, turgor pressure is lost and leaves go limp. Plant Nutrition Plant nutrition often is confused with fertilization. Plant nutrition refers to a plant's need for and use of basic chemical elements. Fertilization is the term used when these materials are added to the environment around a plant. A lot must happen before a chemical element in a fertilizer can be used by a plant. Plants need 17 elements for normal growth. Three of them--carbon, hydrogen, and oxygen--are found in air and water. The rest are found in the soil. Six soil elements are called macronutrients because they are used in relatively large amounts by plants. They are nitrogen, potassium, magnesium, calcium, phosphorus, and sulfur. Eight other soil elements are used in much smaller amounts and are called micronutrients or trace elements. They are iron, zinc, molybdenum, manganese, boron, copper, cobalt, and chlorine. They make up less than 1% of total but are none the less vital. Most of the nutrients a plant needs are dissolved in water and then absorbed by its roots. In fact, 98 percent are absorbed from the soil-water solution, and only about 2 percent are actually extracted from soil particles. Fertilizers Fertilizers are materials containing plant nutrients that are added to the environment around a plant. Generally, they are added to the water or soil, but some can be sprayed on leaves. This method is called foliar fertilization. It should be done carefully with a dilute solution because a high fertilizer concentration can injure leaf cells. The nutrient, however, does need to pass through the thin layer of wax (cutin) on the leaf surface. It is to be noted applying a immobile nutrient via foliar application it will remain immobile within the leaf it was absorbed through. Fertilizers are not plant food! Plants produce their own food from water, carbon dioxide, and solar energy through photosynthesis. This food (sugars and carbohydrates) is combined with plant nutrients to produce proteins, enzymes, vitamins, and other elements essential to growth. Nutrient absorption Anything that reduces or stops sugar production in leaves can lower nutrient absorption. Thus, if a plant is under stress because of low light or extreme temperatures, nutrient deficiency may develop. A plant's developmental stage or rate of growth also may affect the amount of nutrients absorbed. Many plants have a rest (dormant) period during part of the year. During this time, few nutrients are absorbed. Plants also may absorb different nutrients as flower buds begin to develop than they do during periods of rapid vegetative growth. 432 Hz is said to be mathematically consistent with the patterns of the universe. Studies reveal that 432 Hz tuning vibrates with the universe’s golden mean PHI and unifies the properties of light, time, space, matter, gravity and magnetism with biology, the DNA code and consciousness. When our atoms and DNA start to resonate in harmony with the spiraling pattern of nature, our sense of connection to nature is said to be magnified. Another interesting factor to consider is that the A=432 Hz tuning correlates with the color spectrum while the A=440 Hz is off. Audiophiles have also stated that A = 432 Hz music seems to be non-local and can fill an entire room, whereas A=440 Hz can be perceived as directional or linear in sound propagation. Once you adopt the idea that sound (or vibration in general) can have an equalizing and harmonizing effect (as well as a disturbing effect), the science of harmony can be applied to bring greater harmony into ones life or a tune to specific energies. There is a form of absolute and of relative harmony. Absolute harmony can for example be determined by the tuning of an instrument. The ancients tuned their instruments at an A of 432 Hz instead of 440 Hz - and for a good reason. There are plenty of music examples on the internet that you can listen to in order to establish the difference for yourself. Attuning the instrument to 432 Hz results in a more relaxing sound, while 440 Hz slightly tenses up to body. This is because 440 Hz is out of tune with both macro and micro cosmos. On the contrary, 432 Hz is in tune. To give an example of how this is manifested micro cosmically: our breath (0,3 Hz) and our pulse (1,2 Hz) relate to the frequency of the lower octave of an A of 432 Hz (108 Hz) as 1:360 and 1:90. It is interesting to note that 432 Hz was the standard pitch of many old instruments, and that it was only recently (19th and 20th century) the standard pitch was increased. This was done in order to be able to play for bigger audiences. Bigger audiences (more bodies) absorb more of the lower frequencies, so the higher pitch was more likely to “cut through”. One of the oldest instruments of the world is the bell ensemble of Yi Zeng (dated 423 BC), tuned to a standard F4 of 345 Hz which gives an A= 432 Hz. The frequency of 345 Hz is that of the platonic year! Similarly many old organs are tuned in an A=432 as well; for example: St. Peter’s Capella Gregoriana, St. Peter’s Capella Giulia, S. Maria Maggiore in Rome. Maria Renold’s book “Intervals Scales Tones and the Concert Pitch C=128 Hz” claims conclusive evidence that 440 Hz and raising concert pitch above scientific “C” Prime=128 Hz (Concert A=432 Hz) disassociates the connection of consciousness to the body and creates anti-social conditions in humanity. The difference between concert pitch A=440 Hz and Concert A=432 Hz is only 8 cycles per second, but it is a perceptible difference of awareness in the human consciousness experience of the dream we share called existence. Upon orgasm, man releases dopamine, "dope", self-explanatory. A woman releases oxytocin, an extremely strong bonding agent. But there is a catch, the more people you use it on, the less bonding will occur. Promiscuity was sold with "Feminism". For the first time in history, there are more women above the age of 30 with no children than there are below. I was randomly reading around and had a little chuckle to myself when i read this, “In women it is usually accompanied by muscle contractions in the uterus, vagina and rectum, and sometimes in other parts of the body. In addition, the little known female ejaculation may occur to a greater or lesser degree, which is nothing more than a transparent liquid composed of different substances such as prostate antigens, enzymes, glucose and fructose secreted by Skene’s glands." My first thought was "Wonder what the NPK ratio is on that" Maybe I'll start my own specialized fertilizer company. Just bottle up some squirt and call it "Fannies Fluid", PACKED FULL OF ENZYMES! HIGH IN CARBOHYDRATES! BOOST YOUR PLANTS WITH ANTIGENS! Maybe just set up a lemonade stand.
1
9
Share
@Luke_Lee
Follow
-05.09.2024 The twelfth week if you count the seedling phase has begun. The plants look good and are getting nice and frosty. The pistils are mostly amber-colored. The small trichomes are observed once a day with a jeweler's loupe. So far most of them are still quite transparent for me, occasionally you can see milky and amber colored trichomes. But I think this will be the last week for the ladies. They are only washed with clear water. The lamp is running at 75% (225 watts) the PPFD value according to the Photone app is around 900. During the week i will turn the light off for 2 days and then they get chopped
Likes
51
Share
@Zengrower
Follow
The Fruity Donutz are doing great! Still stretching but not as much as last week. I turned on the airco in the growroom at a constant 21 degrees to keep the temperature under 25 in the GTools. Heat can also cause the plant to stretch more, and it has another advantage because it helps to keep the humidity down. The Sanlight is now fully raised to the ceiling and the plants have enough space to build those colas. Removing the suspension cords all together and just attaching the clips to the ceiling was a great solution. Silly that I never thought of this before. Now I don't have to supercrop! Supercropping is HST for the plant, but also High Stress for the grower (at least for me 😅). Not much more to say at this point, but I will post more pics of the developing buds later this week ✌️. Cheers and happy growing!
1
10
Share
@Lazuli
Follow
So this plant just got flushed, Final week and what a dense fat budz and a true blue dream smell she got
1
7
Share
@Ryuko
Follow
One of the Lemon Cherrys is falling behind the other then that they look pretty good Date : 19.06.2024
Likes
7
Share
@Ryuko
Follow
One of the Lemon Cherrys is falling behind the other then that they look pretty good Date : 19.06.2024
1
7
Share
@Ryuko
Follow
Only moved the LST clips around and the girls are happily growing outwards :)
Likes
7
Share
@Ryuko
Follow
One of them is falling behind but thats prob because of the fact that she got a few less liters of space in her pot Date: 22.07.2024
1
7
Share
@Ryuko
Follow
The temperaturs are very good for the girls and they are enjoying the Sun. They get bushier everyday im happy Date: 15.08.2024
1
7
Share
@Ryuko
Follow
Had them, in a glass of water, for 2 days, then planted them into small pots.
Likes
Comments
Share
1
13
Share
The mind grows from observing failed attempts, The body grows from observing failed attempts, One set, fail. Topped mid-week both plants Note: As gibberellic acid is not soluble in water you need to dissolve in alcohol first, 75% Ethanol or rubbing alcohol can be used. Gibberellic acid + Diethyl aminoethyl hexanoate 10% SG Gibberellic acid A4, A7 + 6-benzylamino-purine p.6% EC Gibberellic acid + Paclobutrazol 3.2% WP Gibberellic acid + Forchlorfenuron 0.3% SL Gibberellic acid + Brassinolide 0.4% SL Nutrients for the week are recipe foliar application. The boombox (containing a 3 KHz signal and nature sounds) is played at high volume with high treble and medium bass for 10 minutes before spraying the plants. The plants are then sprayed while its playing and the sound is continued for another 20 minutes after spraying. Both sides of the leaves should be saturated. Treatment is best performed early in the morning/daylight, preferably in foggy 65+ dew. On cold mornings, spraying should be delayed until late afternoon if outdoors. Do not spray plants when the temperature falls below 50o F. The formula also can be administered in the regular weather supply, by drip-feeding, hydroponics, etc.. The nutrient solution should be applied once somewhere in first 4 weeks, then twice weekly thereafter. Seeds should be soaked in a dilute nutrient solution for 8 hours or overnight while the sound tape is played continuously on repeat. Plant the seeds immediately. The sound ought to be played daily for at least 30 minutes during daylight hours no more than 3 hours. https://biologydictionary.net/gibberellin/ Often through our various senses, we receive impressions that bring the pleasure of nature's harmony into our thoughts. At other times we are aware that man has intervened in nature's processes to produce something by art, which to our highly evolved senses seems to rival even the best nature can display of beauty and harmony. We become aware at such times of man's wonderful ability to bring seemingly unrelated elements into harmonic balance, and receive a glimpse into a world where everything exists in conscious sympathetic attunement to everything else. When we listen to a piece of music that seems to strike a beautiful chord somewhere inside us, or view a painting that simply glows with harmonic awareness well executed, we probably do not spare much time to contemplate the wonderfully intricate combination of vibrations that our sensors make it possible for us to perceive. We tend to appreciate the relationship between the parts of something, by an awareness of the harmony or dissonance of the whole. This ability enables us to say "what a beautiful house!" instead of "analysis has proven that this collection of building materials exhibits certain elements of harmonic proportion." While this ability to instinctively appreciate the beauty of true harmony has an important role to play in evolution, a more analytical understanding of the laws involved can be most useful. This is especially so if we wish to create works of art where each part exists in true harmony, not only with the other part of that particular whole, but with the universe within which the creator and the created exist. Everything vibrates. From the most dense matter to the most subtle cosmic rays, everything which our senses allow our thoughts to become aware of, can be specified in terms of wavelength or frequency of vibration. These two terms define the same thing, but from different points of view. (See Illustration 1) The following are the approximate wavelengths of various energy carriers: Cosmic rays 0.000,000,001 mm Gamma rays 0.000,000,1 mm X rays 0.000,500 mm Ultraviolet rays 0.003 mm Visible light 0.006 mm Infrared 0.01 mm Sound waves 1 meter Radio waves 300 meters Violet light 400 nm to 450 nm Blue light 450 nm to 500 nm Green light 500 nm to 570 nm Yellow light 570 nm to 590 nm Orange light 590 nm to 610 nm Red light 610 to 700 nm 1 nanometer (nm) = 0.000,000,1 cm = 1/10,000,000 cm If a guitar string is plucked and we hear a sound, it is not too difficult for the human mind to associate this sound with the vibration of the guitar string. With color it is quite different. It is difficult for us to conceive that the color of a substance is not an inherent property of the substance itself, but an indication picked up by our senses of that substance's ability to absorb or reflect the light which happens to be shining on it at that moment. Neither the matter nor the light is colored. What happens is that the brain learns to differentiate between the frequencies reflected or transmitted by the substance the eyes are focused on. The same thing happens with sound. When we say "Oh! Listen, they're playing my favorite song," what we really mean is: "My brain has stored within it a particular pattern of frequencies. I have compared the new information being received with this stored pattern and have deduced the answer that the two patterns are similar within certain specified tolerances." The 'pleasure' involved could have something to do with our running the pre-recorded pattern at the same time, in 'sympathy' with the new pattern as it is received. The word sympathy describes very well our ability to appreciate color and sound. It also describes the reason behind certain elements of harmony. For instance, if a substance vibrating at 100 cycles per second (tone 1) is in the proximity of another substance vibrating at 200 cycles per second (tone 2), we could perceive, if we had the right equipment, a certain sympathetic relationship between the two. If our equipment was a wave form plotter, we may have a drawing like illustration 2. Illust 2 We will see from this that there is a uniform doubling of the first tone seen in the second. At various points along the waves, the two are the same in amplitude. At other points, they are at opposite poles to each other. This doubled frequency has more points of similarity to the original than any other frequency except the original itself. If the equipment we had available for measuring these two frequencies was a soundboard amplifier and a pair of ears, then we would hear what would sound to us like one tone. If we had the opportunity to hear one at a time, we would hear that although they sound the same, one is higher in pitch than the other. This characteristic of 'the same but different in pitch', musicians have called the octave. Any two tones produced where one has exactly doubled the frequency of the other is called an octave. Speaking in ratios, an octave would appear then as the ratio 2:1 or 1:2, depending on whether we are talking of an octave up or down. A single note produced by almost any instrument will contain more than one wavelength or frequency. It will have a dominant frequency, the wavelength of which we would call the note's 'fundamental' or 1st harmonic. It will also have a varying number of upper harmonics, gradually fading in intensity into infinity or silence. Natural harmonics always have the same pattern of intervals between them. The interval between the 1st and 2nd harmonic is a perfect octave; between the 2nd and 3rd a perfect fifth; between the 3rd and 4th a perfect 4th; and so on, the intervals becoming smaller and smaller until they lose any relationship with the western 12 tone scale as it exists at the moment. Just as an octave has certain elements of sympathy with its fundamental, so some intervals have been noted to be more perfectly in sympathy with the fundamental than others. The ratio of the 'perfect 5th' or interval of 7 semitones, as it occurs in the harmonic series, is 3:2 or 2:3, while that of the 'perfect fourth" is 4:3 or 3:4. All the tones in the western 12 tone scale can be expressed in terms of the ratio between the upper tone and its fundamental. This would seem to be an ideal way of generating a scale from any given fundamental and several attempts have been made to do this, the Pythagorean system being probably the most well known. Although when working with a single tone instrument playing on its own, the Pythagorean formula works wonderfully well, if we had several instruments tuned this way together and asked them to play almost any western music, we would find that at times they sounded quite out of tune to each other. The lack of flexibility of the various scale systems based on the harmonic series has led to what is known as the 'tempered' scale. This uses as its primary unit of interval the ratio of the octave or 2:1. It then proceeds to divide the interval between any fundamental and its upper octave into 12 smaller intervals by applying the ratio: two to the one-twelfth power, to one (21/12:1). This equals 1.059463094, so by multiplying any frequency by this number, we will obtain the tempered semitone next up from our fundamental. We will also find that any tone twelve semitones up from any other tone, in a scale generated in this way, will have exactly double the frequency. If we took the note middle C on a piano and halved the wavelength, we would have the note C one octave above. If we halved this, we would have the C above, and so on. However, within about 6 octaves, we would find that although a 'sound' was being produced, no human ear could perceive it. If we kept on going, halving and producing upper octaves of our fundamental C, we would proceed through the infrared band, into the visible light spectrum. If we happened to be outside during the day, we would, for one octave only, see the note C with our eyes. The next octave above would already be in the ultraviolet band, and outside the eye's sensitivity range. If we can think of color as being an indication of a substance's vibratory rate or wavelength, we may begin to see a relationship that could exist between the color and sound spectrums. The logical extension of what has so far been said is that there exists a scale in the color spectrum that coresponds exactly to the scale in the sound spectrum, each color tone being an octave of the equivalent note in the sound range. This is not the end of the story but only the beginning. If we can for the moment accept that any wavelength in one band has upper and lower octave stretching out to infinity, then tne next question is 'fine, but what shall we use as our fundamental? A particular color? A particular sound frequency?' The musicians among us will probably say 'A 440'. This means that the note A should vibrate at 440 Hertz, or 440 times per second. They would tell us that this is standard pitch has been adopted by most orchestras around the world; pianos are tuned to it, instruments are constructed to formulas based on it, and so to them it would probably seem the most appropriate place to begin. Some of these musicians may know of the battle that is still raging with regards to this being the standard, but few would know why A = 440 Hz was chosen except that it werned when it was set to be a suitable compromise between the many different pitches in use at the time. There is also a scientific standard of pitch of C= 512 Hz which, although not in common use in nusic, has a lot of theoretical followers, as it is generated from the lower octave of C = 1 cycle per second and has certain advantages of numerical simplicity in mathematical research. A scale built upon either of these standards will yield an upper octave scale in the color spectrum. However, with the A = 440 Hz scale, we end up with a color series which, although interesting, is hard to relate to any color system or set of values in current use. The C = 512 Hz system, on the other hand, seems a more obvious choice at first sight, having 12 definite color tones and containing the strongest and most pure colors in the spectrum. Further research showed that there were still things not quite right with this system, and has led to a modified version in which correspondences with other systems seemed to fit into place. Of course the proof of the pudding is in the eating and before being accepted this system will need further research to substantiate the correspondences and prove its value to mankind. What follows is a summary of the process used in drawing up this modified scale. The upper octave color of a fundamental of one cycle per second is found to be exactly emerald green, which is recognized as having a wavelength of 511 nanometers (this is at 20o in air). 511 nm is also the color of malachite, or hydrous carbonate of copper occurring as a mineral. It would seem reasonable, given the teachings in the QBL, to associate this with the planet Venus. If we take 1 Hz or its upper octave 512 Hz as our fundamental, then build a scale upon it using our tempered scale 'formula', we will have the following 12 color tones: 723 nm = infrared 682 nm = deep red 644 nm = orange red 608 nm = orange 574 nm = yellow 541 nm = yellow green 511 nm = emerald green 482 rim = green blue 455 nm = royal blue 430 nm = indigo 406 nm = violet 383 nm = ultraviolet There are certain immediate correspondences that become apparent between some of these colors and our teachings in Parachemistry. The yellow here is the color of chromate lead and zinc yellow, the most 'yellow yellow', for want of a better description, to be found in the spectrum. It seems rather logical, if we follow the Queen scale of color, to call this the Sun, or Vulcan, depending on which system we choose to look at. The orange here is exactly the frequency of sulphide of mercury or cinnabar. It would seem appropriate to relate this to the planet Mercury on the tree of life. If we then call the deepest red in our scale Mars and the Royal Blue Jupiter we find a pattern beginning to form. The ultraviolet here is outside our range of color vision and would appear black to us. If we call this Saturn, as Saturn is described as either black or violet, then we have six tones out of the twelve named. There is in natural things a certain truth which cannot be seen with the outward eye, but is perceived by the mind alone. The philosophers have known it, and they have found that its power is so great as to work miracles. This miracle, we suggest, is at work in the observation of a rose in your garden. This miracle is at work in the observation of a friend in your heart as well as your eyes. The mysterium coniunctionis of the alchemists, that mysterious marriage of the Sun and the Moon, is a conjunction of the most extraordinary scope, because it is a conjunction of physical fact with metaphysical reality. This unique vision is not the result of a tersely factual pouring of acetic acid onto calcined stibium. nor is it the result of a mere figurative allusion that one given substance is the Sun and another, the Moon. Just as with physical facts, the quality of the ingredients has an important influence on the result, so in mental terms, the quality of the thought put into the work has a bearing on its ultimate success or failure. In this truth lies the whole art of freeing the spirit from its fetters, in the same way that, as we have said, the mind can be freed from the body. This last phrase-"the mind can be freed from the body"-is, as we see it, a direct reference to the meditative technique of the alchemist. But perhaps our word "technique" is not quite the correct one, for it seems to imply a formula of sorts, a preconceived set of ideas, whereas in truth, spontaneity is of the essence in meditation as it is in alchemy. Meditation is, after all, a kind of fishing into the subconscious for the wellspring of a truth. The conscious mind, selecting its subject or question (the 'bait') dips like a fishhook into the water. But the bait does not seek the fish. The fish seeks the bait. And this is one of the most commonly misunderstood principles in all of metaphysics. We do not meditate. We are 'meditated.' To achieve this, we must be receptive. Who among us is receptive? Even in the privacy of our laboratory, don't we often tend to adjust flasks, measure substances, think in the jargon of the alchemical work as though we were really performing it? After all, 'I have studied for years; I have read the texts. I direct the course of this work.' Only God directs the work. And not one among us has access to the wellsprings of that wisdom unless we are receptive. That is why alchemy is an art as well as a science. It is not only the art of directing the work as we understand it after being instructed by a book or a teacher. it is also the art of receiving the work, i.e., being receptive to it in our hearts, and letting the work refine us, even as we refine our work. That is the confluence of two worlds that the true alchemist experiences. We can, and must, strive for that through years of intellectual, physical and emotional effort, but in the end, we do not make it happen-we let it happen. And only through meditation is this "letting go possible. Thou wilt never make the One which thou seekest, except first there be made one thing of thyself. This "one thing" is the one-pointed concentration and subsequent meditation of the devoted student. It involves and utilizes every level of his being. It brings those levels to a pitch of alertness previously unknown, and then, once attained, it lets go of them. The technique is familiar to readers acquainted with Zen, with Yoga, with Taoism, and with many other religious disciplines. But it has not been consciously identified with alchemy for the simple reason that alchemy is so widely misunderstood or even ignored, its terminology and methods being so notoriously obscure and complex. Martin Ruland's Lexicon of Alchemy defines meditatio as follows: The word MEDITATIO is used when a man has an inner dialogue with someone unseen. It may be with God, when He is invoked, or with himself, or with his good angel. Clearly, then, the meditative aspect of the alchemical work is not merely cogitation, or simply sitting down and thinking about the work. To be sure, preliminary organization of the theory of a given procedure is essential; master the theory before the praxis. But meditation goes deeper than this, and involves a much more complex process. The point to be emphasized is that meditation is an inner dialogue. We must select our terms for it with care, in attempting to describe it. The occultist will see it as a profound revelation from the Higher Self. the ceremonial magician, as the Knowledge and Conversation of the Holy Guardian Angel. the religionist as a form of prayer; the skeptic as an hypnotic trance; and the psychologist as a means of coming to terms with the contents of the unconscious. ' Little wonder that the alchemist is said to begin his work with a massa confusa! Both in his mind and in his physIcal labors, he must sort out of the primal chaos a goodly order. If his thoughts are not in order, his substances will not be properly handled. And even at best, if both are in order, he must have the courage to dive deeper into his inner resources to understand the relationship between his own soul and that "soul" of matter with which he works. He can still expect to be attacked on the one hand by skeptical occultists for being too "literal" in using laboratory methods; and on the other by scientifically learned friends for being a religious sentimentalist over a few flasks and retorts. So the alchemist, even today, has his own razor's edge to walk. But the challenge of the work goes beyond trite dismissals and defies the easy categories of those who try to explain it away. The man or woman who enters it with a prayerful and meditative heart can only benefit by its pursuit. Not one writer in this century or in those past can tell us the path is an easy one. Yet as Michael Maler has said: There is in our chemistry a certain noble substance over whose beginning, affliction rules with vinegar, but over whose end, joy rules with mirth. Finally, we draw from the wisdom of Morienus in instructing Khalid: This thing for which you have sought so long is not to be acquired or accomplished by force or passion. It is only to be won by patience and humility and by a determined and most perfect love. For God bestows this divine and immaculate science on his faithful servants, namely those on whom he resolved to bestow it from the original nature of things.... Nor were they able to hold anything back save through the strength granted to them by God, and they themselves could no longer direct their minds save toward the goal appointed for them by God. For God charges those of his servants whom he has purposely chosen that they seek this divine science which is hidden from men, and that they keep it to themselves. This is the science that draws its master away from the suffering of this world and leads to the knowledge of future good. The following short poem was dated December, 1633, and signed only with the initials W.B. It later appeared (in 1651) in a collection of alchemical works compiled by Elias Ashmole titled THEATRUM CHEMICUM BRITANNICUM, Still considered one of the finest collections of alchemical works in English. This short poem exemplifies the efforts of early writers not only to summarize their work but to meditate on it-a point dealt with in another article in this issue-and to direct the reader to meditate as well on the alchemical message implicit in the ancient myths. The fifth stanza urges the student to a careful consideration of the myths of Cadmus and Jason, advice both given and followed three hundred years later by Fulcanelli in his famous work, LE MYSTERE DES CATHEDRALES. We have modernized the poet's spelling. -Editor Through want of skill and reason's light Men stumble at noon day; Whilst busily our Stone they seek, That lieth in the way. Who thus do seek they know not what Is it likely they should find? Or hit the mark whereat they aim Better than can the blind? No, Hermes' sons for Wisdom ask, Your footsteps she'll direct: She'll Nature's way and secret cave And Tree of Life detect. Son and Moon in Hermes' vessel Learn how the colors show; The nature of the elements, And how the daisies grow. Great Python how Apollo slew, Cadmus his hollow oak: His new raised army, and Jason how The fiery steers did yoke. The eagle which aloft doth fly See that thou bring to ground, And give unto the snake some wings, Which in the earth is found. Then in one room sure bind them both, To fight till they be dead, And that a Prince of Kingdoms three Of both them shall be bred. Which from the cradle to his crown Is fed with his own blood; And though to some it seems strange, He hath no other food. Into his virgin mother's womb Again he enter must; So shall the King by his new birth, Be ten times stronger just. And able is his foes to foil, The dead he will revive: Oh, happy man that understands This medicine to achieve!
Likes
7
Share
Wow! Super fun strain to grow. Smells like stawberries and cream. For real. It is mindblowing. I hope fresh frozen live rosin will be fire when I'll make it in a week. Very sturdy plant, but not very resistant to high temperatures - some phenos tend to foxtail then. But apart from that it is one of the best I've ever grown - up to par with MAC1 👽 or Grandpa's Cookies 🍪 Top tier terpenes and resin production. I love it 😍 It is my personal record - 3064g (wet) from 3 plants from 4x4ft tent 😎💪 Should be ~800-900g of dry flower if I'd ever dry it (but 99% of it is ment for fresh frozen bubble hash and rosin pressing - flowers are already in deep freeze apart from small 10g sample I'm drying normally). Seeds are not cheap - you have to but 20, but I highly recommend this cultivar. Yield blown my mind. I hope it'll taste and wash as good as it smells 🙏